

VoxSculpt: An Open-Source Voxel Library for
Tomographic Volume Sculpting in Virtual Reality

Lucas Siqueira Rodrigues

Cluster of Excellence

“Matters of Activity”

Humboldt-Universität zu Berlin

Berlin, Germany

[0000-0001-7675-136X]

Felix Riehm

Angewandte Informatik

Hochschule für Technik und

Wirtschaft Berlin

Berlin, Germany

felix.riehm@student.htw-berlin.de

Stefan Zachow

Visual and Data-Centric

Computing

Zuse Institute Berlin

Berlin, Germany

[0000−0001−7964−3049]

Johann Habakuk Israel

Forschungsgruppe CENTIS

Hochschule für Technik und

Wirtschaft Berlin

Berlin, Germany

[0000-0002-8513-6892]

Abstract—Manual processing of tomographic data volumes,

such as interactive image segmentation in medicine or

paleontology, is considered a time-consuming and cumbersome

endeavor. Immersive volume sculpting stands as a potential

solution to improve its efficiency and intuitiveness. However,

current open-source software solutions do not yield the required

performance and functionalities. We address this issue by

contributing a novel open-source game engine voxel library that

supports real-time immersive volume sculpting. Our design

leverages GPU instancing, parallel computing, and a chunk-based

data structure to optimize collision detection and rendering. We

have implemented features that enable fast voxel interaction and

improve precision. Our benchmark evaluation indicates that our

implementation offers a significant improvement over the state-of-

the-art and can render and modify millions of visible voxels while

maintaining stable performance for real-time interaction in

virtual reality.

Keywords—voxel library, volume sculpting, virtual reality

I. INTRODUCTION

Tomographic imaging techniques, such as CT, MRI, and
ultrasound, are important in a variety of fields including
medicine, paleontology, and engineering [1]. Advances in this
area have enabled the non-destructive exploration of internal
structures, providing valuable information for practitioners in
different fields. Material separation and labeling of relevant
structures of interest in processes such as image segmentation
are necessary to provide an understanding of such data. Despite
recent developments in the automated segmentation of
tomographic data volumes, manual processes are necessary for
complex scenarios that require human expertise [2]. Interactive
image segmentation of tomographic data, including volume
editing, is cumbersome as current solutions utilize slice-based
2D tools for interacting with 3D data [3]. Volume sculpting
poses as a potential interaction metaphor that could improve the
efficiency of interactive image segmentation. Virtual reality
would be an evident medium for volume sculpting as it enables
direct manipulation in the 3D space and may support better
understanding and decision-making in such tomographic
imaging operations [4][5].

Since tomographic imaging practitioners engage in
workflows that are unique to their fields, custom tools must be

designed to cater to their specific requirements. Game engines
are widely regarded as the most practical and cost-effective
instrument to enable researchers in designing custom solutions
[6]. However, current game engine voxel libraries do not yield
the performance and functionalities necessary to enable volume
sculpting in virtual reality. The present study aims to address this
gap by answering the following research question: “Can a novel
open-source game engine voxel library enable volume sculpting
in virtual reality?”. In the following section, we describe the
state-of-the-art and its limitations to the proposed application.
Next, we describe the design of a novel open-source game
engine voxel library that supports real-time immersive volume
sculpting. Finally, we evaluate our design through benchmark
comparison against the state-of-the-art and discuss the impact of
our contribution.

II. BACKGROUND

Relevant literature ranges at different points of significance
to our research question’s criteria. Most contributions focus on
displaying tomographic data in VR scenes, but their interactivity
is limited to scene visualization and transformation [7]. Faludi
et al. present a method for the direct visual and haptic rendering
of volumetric medical data sets in virtual reality [8]. King et al.
created an application that renders CT scans through the
communication between 3D Slicer and Unity [9]. Wheeler et al.
employed OpenGL context sharing to display VTK objects in a
Unity scene [10]. Other works enable volume editing in other
specific contexts but are not open-source libraries. Rizzi
implemented volume deformation within an immersive surgical
simulation [11]. Reddivari and Smith created a visualization
tool for MRI images that allows for volume editing [12]. Zhang
et al. incorporated haptic feedback into their surgery simulator
by using Unity and Nvidia Flex [13]. Other works implement
direct volume rendering, which is used widely in medical
visualization tools [14] [15] [16]. Escobar-Castillejos et al.
describe an architecture to build a visuo-haptic application as a
Unity plugin [17]. In terms of open-source solutions, Williams
introduces Cubiquity, a voxel engine that shares many
similarities with the popular Minecraft game [18]. Cubiquity
provides classes to build and manage voxel data, including
tomographic image slices. Although platform-independent,
Cubiquity includes a Unity plugin integration.

Amongst the works listed above, Cubiquity stands as the
closest available alternative to the aforementioned criteria, but
literature indicates that the library has performance limitations
when supporting real-time voxel interaction in virtual reality.
Duncan et al. integrated Cubiquity into their intervention and
“faced many challenges in the display and manipulation” of a
scaled-down “MRI with 256 voxels per dimension” [26].
Similarly, Chheang et al. reported that “low FPS happens during
the cutting simulation” as they tracked “collision
synchronization noticeably lagging behind the modifications of
cutting” [27]. Similar performance issues were described by
Rodrigues et al. [19]. Thus, we contribute VoxSculpt as a novel
voxel library aimed to advance the state-of-the-art.

III. METHODOLOGY

In this section, we discuss the design and implementation of
a custom voxel library as a proposed solution for virtual reality
volume sculpting in the Unity game engine. In the following
subsections, we describe our library’s data structure, volume
modifiers, ray casting, physic colliders, and rendering modules.
Under Data Structure, we present the library’s voxel storage,
state management, chunk organization, and I/O operations
leveraging Unity Jobs. Next, we describe the implementation of
four Volume Modifiers: cutting, restoring, filtering, and undoing.
Under Ray Casting, we describe how our VoxSculpt enables fast
volume editing by casting a fixed-size ray to acquire voxels
within the probe’s reach. Then, Physics Colliders are presented
as a solution for higher sculpting precision through the detection
of collisions between volume voxels and mesh colliders. Finally,
Rendering describes the use of GPU instancing for optimal
performance. Fig. 1 summarizes our library’s design.
Subsequently, this section details our implementation.

Fig. 1. VoxSculpt’s implementation concept from a user’s perspective.

A. Data structure

In VoxSculpt’s data structure, voxels are densely stored in a
3D array for permanent storage. Each voxel stores its index
space position, 8-bit grayscale color, and state: Visible, Solid, or
Removed. State changes do not remove voxels from the data
structure. The voxel grid has been designed to be permanently
dense in order to support a restoring tool that requires collision
detection on removed voxels. An octree implementation was
considered, but this approach yielded low performance in
Cubiquity as octree regeneration upon volume updates and the
full-depth traversal are costly operations, especially for dense
grids. Meanwhile, the chunk-divided array delivers direct access
to volume voxels. In our implementation, chunks are
represented by sparse storage [20], composed of multiple
supporting hash maps storing visible voxels inside of visible
chunks (see Fig. 2). More information about the supporting data
structures is available in the source code annotations.

Fig. 2. A 256x256x12 voxel grid divided into 16x16 visible chunks. White

labels indicate the index space position (x,y,z) inside the volume.

Chunks enclose voxels inside their cubic shape. When an
imported volume is not fully dividable by chunks, our
application evens out incomplete chunks by adding empty
voxels. Resizing only has an impact on updating the compute
buffer described in the Rendering subsection. These buffers are
updated when modifying the voxel grid and are mapped to the
volume’s chunks. When scaling down a chunk, the application
must iterate over smaller compute buffers, which leads to
numerous computationally-expensive I/O operations to the GPU.
Oversizing a chunk reduces the number of compute buffers.
However, when an operation modifies a chunk, more voxels
must be sent to the GPU, which increases I/O operation time.

All data structures used in the dense and sparse storage
leverage Unity.Collections, which integrates native containers in
the Unity Entities package. Dense storage implements a 1D
NativeArray, whereas sparse storage uses a
NativeMultiHashMap and several regular NativeHashMaps.
The entire application solely employs 1D arrays. 3D positions
from 1D indices, and vice-versa, are calculated at runtime.
Starting with (x:0, y:0, z:0), columns are filled first to match
Unity’s positive x-direction, followed by rows, matching the
positive y-direction, followed by depth in the positive z-
direction. Unity Jobs’ native collections provide fast memory
allocation outside of the managed C# runtime, which prevents
garbage collector memory reallocation. Through the allocation

of a single memory block, the data is also cache-coherent, which
may result in fewer cache misses during cutting or restoring
operations. From a future perspective, 1D arrays are also needed
to parallelize the application on a GPU, since frameworks like
Nvidia CUDA and OpenCL demand 1D array input. Native
containers only work with non-reference types to enforce safety.
Therefore, voxel data is stored inside of a struct. In general, the
application avoids creating new C# objects, uses object pooling,
and pre-allocates memory whenever possible.

B. Volume Modifiers

VoxSculpt provides four ways to modify a volume: cutting,
restoring, filtering, and undoing.

1) Cutting and restoring
We define cutting as removing a voxel, whereas restoring

means reestablishing a removed voxel. These operations require
the management of voxel states (dense storage) and visible
voxels list (sparse storage). Fig. 3 illustrates the process of
cutting and restoring a single voxel.

Fig. 3. Illustration of the process when removing or adding a voxel.

In this scenario, Voxel A is only removed under the Visible
state. Otherwise, neighbor voxels (B1 to B4) are checked for the
Solid state, in which case that voxel becomes visible. The ruleset
for adding a voxel is larger to prevent visible voxel artifacts
when re-adding voxels. In Fig. 3, the bottom-left grid illustrates
the process of making Voxel B4 solid when re-adding Voxel A,
which would create unnecessary voxel rendering. Therefore,
when re-adding Voxel A, the neighbors C1 to C3 of a neighbor
Voxel B are additionally checked. If B4 is visible, and if C1 to
C3 are all visible or solid, Voxel B4 becomes solid. If one of the
neighbors of Voxel A (B1 to B4) is removed, Voxel A becomes
visible. If Voxel A is already visible, Voxel A becomes solid when
all neighbors are solid or visible.

2) Parallel filtering
Filtering enables users to batch-remove voxels that match a

specified intensity value range. Unity Jobs was leveraged to
accelerate through fast thread creation. Worker threads are
equally distributed on available CPU to minimize context
switching. Threads are reused to avoid recreation, and Unity
Burst’s compiler optimizes each job system for performance.
The filtering process is divided into three phases as
demonstrated in Fig. 4.

Fig. 4. Process when filtering a value or a value range.

Unity Jobs operates in individual chunks. In the first phase,
values are removed from a chunk, modifying the volume’s dense
storage. In the second phase, voxels that should be made visible
after removal are identified. These voxels are added to the
volume in the last phase. Threads merge between each phase,
except for the first two phases, which are executed in parallel.

Fig. 5. Data structure at each phase when filtering value A.

Fig. 5 demonstrates the effects of four phases on the data
structure. On the leftmost grid, Value A stands as a voxel that
has been marked for filtering. Next, this voxel is removed from
dense storage, leaving a blank value that would violate
previously described rules. To address this issue, the next phase
identifies voxels that should be made visible (B1-B4). The state
of these voxels is then set to visible in the final phase. In this last
stage, these voxels are also added to sparse storage, which holds
visible voxels that should be rendered.

This process has been divided into discrete phases as parallel
work is not possible on sparse storage data structures. Indeed,
parallel access to sparse storage hash maps would create race
conditions and result in undefined behavior. Thread-safe access
is achievable, but it would be accomplished by semaphores
which are blocking calling threads, leading to performance
decreases. Therefore, phase three exists because visible voxels
cannot be identified in the second phase due to chunk-edge
problems (see Fig. 6).

Fig. 6: Chunk-edge problem when filtering a value A.

Fig. 6 shows a problem that can occur when trying to find
visible voxels in the second phase. If a job J1 works on Chunk 1
while another job J2 is working simultaneously on Chunk 2, J1
cannot determine if B3 is a visible voxel because B3 might be
removed from job J2. Therefore, phase three depends on phase
one. Phase three uses a custom data structure for saving
identified visible voxels because all jobs must write in parallel
on the same data structure.

The data structure for identified visible voxels storage is
conceptionally a 2D array, although the actual implementation
utilizes a 1D array. Each column stores 1D indices of identified
visible voxels and is mapped to a chunk. Thus, all jobs can
simultaneously write to the array. To accelerate adding and
iterating processes, the lengths of the stored identified visible
voxels are also stored. Each column is pre-allocated with the
number of voxels inside a chunk. The last phase adds these
voxels to the visible voxels list.

3) Parallel cutting and restoring
For coarse but fast cutting and restoring, a parallel

alternative is implemented. This method currently only works
with cubes, but a rectangular cuboid or other primitives could be
added. This method divides cubes into layers to feed the jobs
with separated data (see Fig. 7).

Fig. 7. The parallel cutting process. Blue: Hull layer. Red: Inner layers.

When voxels in the inner layers are removed, the hull layer
job adds visible voxels to the volume. The process works
similarly to the filtering process. When restoring, the inner layer

jobs add voxels by making them solid, while the hull layer job
makes the voxels visible.

4) Undoing
The undo functionality allows users to reverse manual voxel

operations. Removed or restored voxels associated with their
respective actions are added as commands in a ring buffer
having a size of 262.144 (218), a limit that can be
programmatically adjusted. When users call the undo function,
recent commands are reversed, beginning with the last
command added to the ring buffer and continuing with the most
recently added operations until the buffer is emptied.

C. Ray Casting

.

Fig. 8. The process of ray casting.

Fig. 8 illustrates our ray casting implementation: As shown
in Segment A, a fixed-size step checks if a point is inside a voxel.
To check if a point in world space (B) is inside a voxel, the script
attempts to retrieve the voxel by a voxel index coordinate. To
get the voxel index, the world space point is transformed to
volume local space (C). The volume has its origin in the lower-
left corner, which is aligned with the origin of the local
coordinate system. After this step, the inverse rotation of the
volume is applied to point (D). This mimics a situation where a
volume would be in an axis-aligned pose. Next, the components
of the index coordinate are calculated by dividing each
component of the rotated point with the scale of a voxel,
followed by applying the Math.Floor() function to that result.

D. Physic Colliders

When sculpting a volume, users can interact with the volume
using ray casting or voxel physic colliders. Ray casting suffers
from inaccuracy as numerous ray casts in multiple directions
would be required to fully sample visible voxels, and its
algorithm would need to delete voxels that enclose the probe,
which would only be possible for primitive shapes. For a more
accurate and robust solution, we have implemented physics
colliders to enable the possibility of detecting contact between
any mesh collider and volume voxels (see Fig. 9). Higher
sculpting accuracy can only be achieved by supporting physics

colliders. To use this feature, users only need to add a
VolumeCollidable script to any Game Object. This action
transforms the entity into a probe that can listen to Unity’s native
Collision events and access collided voxel data in its
ColliderData component.

Fig. 9. An example of a custom mesh collider (a chisel) cutting a volume.

A local approach was chosen as adding individual 3D
objects (i.e., Unity game objects) and colliders for millions of
voxels would heavily impact performance. To prevent the
creation of an unnecessary number of colliders,
VolumeCollidable continuously checks for voxels inside the
collider’s axis-aligned bounding box (AABB). Checking is
performed by stepping with the size of a voxel over the space of
the AABB. If a voxel is detected, the BoxCollider component’s
game object is aligned with the voxel mesh. Game objects of all
possible colliders are pre-allocated to create an object pool. For
example, for an AABB that can enclose a maximum of 16 voxels,
16 game objects are allocated along with their respective box
colliders. When aligning a collider, the script uses a game object
from this object pool. Only box colliders that are aligned with
volume voxels are enabled while the remaining Box Colliders
are deactivated (see Fig. 10).

Fig. 10. Collision model comparison. Left: Ray casting method. Right:

Collidable method. While ray casting does not detect solid (yellow) voxels, the

collidable method detects all voxels colliding with the sphere mesh. Red voxel

borders show enabled colliders, and “C” voxels receive collisions.

Unity game objects are never deactivated to prevent
performance declines. When aligning a collider, a ColliderData
 component is added to its game object to hold voxel data. Fig.
11 illustrates this process within a Unity scene.

Fig. 11. Visualization of the enabled colliders when cutting the volume with

a “VolumeCollidable”-object. Left: The volume viewed from the outside.

Right: The same volume as seen from the inside.

E. Rendering

VoxSculpt limits rendering to visible voxels that are stored
in sparse storage. Moreover, GPU instancing is leveraged to
further improve voxel rendering performance (see Fig. 12).

Fig. 12. VoxSculpt’s rendering cycle process.

Instancing reduces the amount of data sent to the GPU,
which also reduces state switches inside the graphic API. All
relevant rendering data is stored on the GPU, which includes
voxel position in index space, voxel color, voxel meshes, and
the transform matrix for transforming the vertices to the correct
world space coordinate. The GPU then draws visible voxels
using a shader.

Upon user-initiated volume modifications, the GPU only
receives voxel data from chunks that were modified in the last
frame in order to maintain stability in the cutting-rendering
process. Once the GPU receives this data, modified chunks are
reset to their unmodified state. Upon volume initialization,
chunks containing visible voxels are marked as modified.

In VoxSculpt, the shader not only renders voxels but also
translates them to their correct positions. GPU instancing
optimizes this process through parallel execution, given that the
GPU receives the volume transform matrix whenever the
volume’s Unity transform object changes. This matrix not only
transforms the voxel mesh’s origin to the correct world position,
but it also repositions the mesh vertices relatively to that point
in the correct coordinate. This is achieved by overwriting the last
column in that matrix with the translation vector of the
transformed world position of the voxel origin [21]. Without this
step, only the world position of the voxel origin would have the
same rotation as the volume, but not the voxel mesh when

rotating the volume. VoxSculpt fully supports volume scaling,
rotation, and translation.

Fig. 13. Left: Voxels rendered with only their color value. Right: Voxels

rendered with Phong shading

Our shader applies Phong shading to individual voxels to
improve visual salience between neighboring voxels. Fig. 13
compares voxel rendering before (left) and after (right) applying
Phong shading. Although this effect improves voxel
differentiation, one could argue that it distorts original color
values that may be of importance. Light intensity and color in
the Unity scene have an impact on appearance. This shading also
introduced screen door and Moiré effects when viewing the
image from a certain distance. Activating 8x MSAA reduced
these effects and yielded a cleaner image.

F. Source Code and User Documentation

All relevant code has been evaluated with unit tests and fully
commented. We have created user documentation and a Getting
Started guide with code examples using available prefabs,
scenes, and example volume data. The repository can be
accessed at: https://github.com/lsrodri/VoxSculpt

IV. RESULTS

We present the results of benchmark tests comparing
VoxSculpt against Cubiquity. This evaluation assesses these
libraries’ performance for different voxel operations and
indicates their performance limitations. Benchmark results were
extracted from a development build and analyzed with Unity’s
editor profiler in an isolated testing environment. For both voxel
libraries, we compared the best benchmark results out of 10 runs.
The application build was performed under the following
settings: Resolution: 1440x1600; Quality setting: high; MSAA:
disabled; Default contact offset: 0.0001; Fixed physic time step:
0.01111; VSync: 90 fps. The physic time step was set to match
the frame rate, which was limited to 90 fps. The system used for
the benchmarks had the following configuration: Intel Core i5-
10400 with six cores, each having 2.9 to 4.3 GHz; 16 GB DDR4-
2666 RAM; GeForce RTX 3060 with 12GB GDDR6. According
to the Unity profiler, memory usage after starting the application
and initializing the volume was 1.84 GB.

A. General Performance Compared to Cubiquity

To compare VoxSculpt’s and Cubiquity’s general
performance, we integrated both libraries into the benchmarking
command line tool to automatize the benchmark process. Table
I summarizes how VoxSculpt outperforms Cubiquity in all 4
operations.

TABLE I: PERFORMANCE COMPARISON OF VOXSCULPT AND CUBIQUITY

Operation/Library Cubiquity VoxSculpt

Initialize (seconds) 39.139 2.275

Delete (seconds) 0.283 0.123

Add (seconds) 0.295 0.145

Modify (seconds) 0.295 0.015

B. Sculpting Performance Compared to Cubiquity

To compare actual sculpting performance, we applied the
exact setup and implementation used in Cubiquity. Wherever it
was necessary. we replaced volume and method calls with their
VoxSculpt equivalents.

Fig. 14: Cutting performance of the ray cast (A), the collider (B1) with collider

count (B2), and the parallel methods (C). Red lines mark the start and end of

each benchmark.

1) Ray cast method

We compared cutting in VoxSculpt and Cubiquity by setting
the probe size in both systems to 0.06m, which removes 4,139
voxels upon collision. VoxSculpt delivers a steady 90 FPS
performance, as Graph A of Fig. 14 demonstrates. Moreover,
the graph indicates that a larger probe would be feasible under
this criterium as the application mostly waits for VSync. On the
other hand, Fig. 15 shows that Cubiquity cannot deliver stable
framerates.

Fig. 15. Cubiquity performance using a 0.06m probe.

2) Collider method

Since the collider method has been designed for operations
that require higher precision at the expense of lower speed, the
probe was rescaled to 0.025m in both libraries. Under this
configuration, cutting removes 504 voxels per contact. Graph
B1 in Fig. 14 shows that the application provides a steady 90
FPS experience. Graph B2 shows the number of colliders in the
scene at each moment. The scene contained a maximum of about
1,300 enabled colliders and 811 contact points. The apparent
jitter is due to the physic time at initialization, which did not
occur during collision. The spike at the start of B1 comes from
initializing the object pool of collidable objects. Since changing
the size of the collidable object also results in a different number

https://github.com/lsrodri/VoxSculpt

of possible colliders, this must be done when changing the size
of the collidable or volume.

3) Parallel cutting

Parallel cutting uses ray casting for collision detection. We
scaled a cubic probe to 0.1m, which removes 35,937 voxels per
collision. Despite this higher voxel count, this method still
provided a solid 90 FPS experience as shown in Graph C of Fig.
14. Meanwhile Cubiquity performs at 50 FPS under similar
conditions. The graph also shows that there are no performance
spikes, except for the period where the profiler was set in the
background to stop the recording in Unity’s main window,
which is irrelevant to this measure.

C. Performance of Undo, Filtering, and Volume

Initialization

We replicated the setup and implementation of the previous
benchmark test to gather data about the performance of the undo,
filtering, and initialization operations.

1) Undo

As described earlier, the undo operation reestablishes all
voxels in the buffer. In this test, the voxel buffer size for the
undo operation varied. The undo operation was executed after
cutting the volume with a 0.05m probe through the ray cast
method. Results are presented in Table I.

TABLE II: PERFORMANCE RESULTS OF THE UNDO OPERATION

Voxel buffer size 131,072 262,144 524,288 1,048,576

Time (seconds) 0.05 0.10 0.19 0.37

2) Filtering

We executed two filtering operations utilizing different
value ranges. We reinitialized the volume before each operation.
The results are summarized in Table III.

TABLE III. PERFORMANCE RESULTS OF THE FILTERING OPERATION

Value Range 0-42 0-255

Time (seconds) 1.13 1.24

3) Initialization

The initialization test includes rendering and reading our
proprietary volume file. Volume initialization was performed at
the 6:59 second mark.

D. Performance Limitations

This section details circumstances under which VoxSculpt is
unable to render a voxel volume at 90 FPS. The setup and
implementation from previous sections were used for all cutting
performance tests in this section.

Fig. 16. Performance limitations of the ray cast, collider, and parallel cutting

methods. Red lines mark the start and end of each benchmark.

1) Ray cast method

Graph A in Fig. 14 shows the ray cast method’s cutting
performance limitation when setting the probe scale to 0.087m,
which removes 11,459 voxels per cut. The limiting factor of this
method is the iterative removal of voxels.

2) Collider method

Graph B1 in Fig. 14 displays benchmark results for cutting
with the collider method. The probe’s scale was set to 0.03,
which removes 792 voxels per collision. Graph B2 shows that
about 1,900 enabled colliders were used at most. The number of
colliders is the limiting factor of this method, which depends on
the volume and the collidable object scales. An excessive
number of colliders would cause the collidable script to iterate
over too many possible colliders. Updating the colliders’
corresponding game objects is a particularly demanding task.
With fewer enabled colliders to update, performance improves
even when the script must iterate over the entire AABB. As
shown in the profiler graph, performance increases over time as
the cutting object incurs in smaller steps and does not have to
create colliders where voxels are already removed. The
calculation of Unity’s contact points modestly improves over
time.

3) Parallel cutting

Graph C in Fig. 14 presents benchmark results for parallel
cutting. The cubic probe’s scale was set to 0.15, removing
132,651 per cut. Here, the limiting factor is the number of cores
available for executing the cube layers mentioned in the 3)
Parallel cutting and restoring subsection. Thread execution
time increases along with the number of voxels. Rendering
eventually limits the parallel cutting operation.

4) Rendering
Another limiting factor is the number of visible voxels that

the application can render. Our parallel cutting benchmark,
using a cubic probe of 0.2m shows that the application can
handle 2,476,484 visible voxels. At the end of the operation,
rendering is constantly slightly below 90 FPS as Unity’s
rendering thread must wait for its main thread and vice versa.

TABLE IV. RENDERING LIMITATION OF 2,476,484 VISIBLE VOXELS AFTER

VOLUME INITIALIZATION AND AFTER APPLYING A FILTER OPERATION WITH A

VALUE RANGE OF 0-42.

 After initialization After filter operation (0-42)

Visible
chunks

2,344 4,197

Visible voxels 654,936 1,225,995

Table IV summarizes visible voxel variation after volume
initialization and the application of a filter operation of a 0-42
value range. The 512x348x176 voxel volume used for these
benchmarks stores 31,358,976 voxels, which are divided into
8,712 chunks, represented by a 33x22x12 chunk grid.

TABLE V. APPROXIMATE CUTTING PERFORMANCE LIMITS OF CUBIQUITY

AND VOXSCULPT UNDER A STABLE OF 90 FPS

Library Cubiquity VoxSculpt VoxSculpt VoxSculpt

Method Ray cast Collider Ray cast Parallel

Cutting
voxel
limit

4,139 792 11,459 132,651

Object
scale

0.06 0.03 0.087 0.15

The most relevant data from Table V demonstrates that
VoxSculpt delivers improved volume sculpting performance
compared to Cubiquity. Using the Ray Casting method,
VoxSculpt can delete about 2.7 times more voxels than
Cubiquity while still maintaining a stable 90 FPS experience.

V. DISCUSSION

Benchmark comparison results demonstrate that VoxSculpt
outperforms Cubiquity in measured operations. Sculpting
operations are faster because they only access dense storage and
write new color values to the 3D array without the creation or
removal of visible voxels. The same rationale applies to the
volume initialization since this method primarily accesses the
3D array, followed by making the volume’s surfacing voxels
visible, which translates to adding voxels to the visible voxel list.
In general, performance is heavily affected by calculations that
ensure that only visible voxels are shown.

Cubiquity still outperforms VoxSculpt’s rendering in the
parallel cutting operation as Graph C in Fig. 14 demonstrates.
This issue might be attributed to a different rendering schema,
as Cubiquity only renders visible voxel faces, and it presumably
does not render occluded voxels. VoxSculpt renders cubes with
12 triangles and renders voxels that are occluded by other voxels,
which generates a significant calculation overhead and is
compensated by GPU Instancing.

VoxSculpt has limitations regarding the maximum size of the
tomographic dataset volumes that can be rendered and sculpted.
This is especially true for the collider method, necessary for
precise cutting. Table 5 summarizes the number of voxels that
can be cut while still maintaining a stable 90FPS performance.

VoxSculpt’s rendering capacity limitation could potentially
be addressed through chunk occlusion culling [22] through the
flood fill algorithm [23]. Another approach to improve rendering
would be to implement greedy meshing [24] to reduce the
number of rendered triangles for each voxel.

Another limitation is the maximum number of supported
colliders. A pragmatic approach to increase this limit would be
to schedule the collider updating algorithm in parallel using
Unity DOTS to replace the current game objects with cache-
coherent entities. AABB testing could also be divided into
chunks and assigned to Unity Jobs, which has the potential issue
of being limited to primitive shape colliders.

Ray casting accuracy is another candidate for improvement.
This issue is mostly unnoticeable under sufficiently large
volume resolution and camera distance, but a closer distance
could show that the ray casting method misses contact points
while nearing corners. Better accuracy could be achieved
through an algorithm based on the Digital Differential Analyzer
as it is a fast and robust choice for a tiled object like a voxel grid
[25].

VI. CONCLUSION

In this article, we have presented VoxSculpt, a novel open-
source voxel library for tomographic volume sculpting in virtual
reality. Our library is built on top of a popular game engine and
leverages GPU instancing, parallel computing, and a native
chunk-based data structure to optimize rendering performance.
Our benchmark evaluations indicate that VoxSculpt offers a
significant improvement over the state-of-the-art and can render
and modify millions of visible voxels for stable real-time
interaction in virtual reality. We have also implemented a range
of new features such as filtering, undoing, restoring, and
improved sculpting precision.

By enabling real-time immersive volume sculpting,
VoxSculpt has the potential to improve the efficiency and
intuitiveness of manual processing of tomographic data volumes,
such as interactive image segmentation. As we publish
VoxSculpt as a freely-available resource, we anticipate that this
voxel library might assist researchers in creating custom
solutions for tomographic imaging practitioners.

ACKNOWLEDGMENT

The author acknowledges the support of the Cluster of

Excellence »Matters of Activity. Image Space Material« funded

by the Deutsche Forschungsgemeinschaft (DFG, German

Research Foundation) under Germany's Excellence Strategy –

EXC 2025 – 390648296.

REFERENCES

[1] J. K. Iglehart, "The new era of medical imaging—progress and pitfalls,"
New England Journal of Medicine, vol. 354.26, pp. 2822-2828, 2006.

[2] H. Ramadan, C. Lachqar, and H. Tairi, “A survey of recent interactive
image segmentation methods,” Comp. Visual Media, vol. 6, no. 4, pp.
355–384, Dec. 2020.

[3] Chowdhary, C. L., & Acharjya, D. P., "Segmentation and feature
extraction in medical imaging: a systematic review.," Procedia Computer
Science, vol. 167, pp. 26-36, 2020.

[4] E. Hutchins, l. Hollan and D. A. Norman, "Direct manipulation
interfaces," Human–computer interaction, vol. 1(4), pp. 311-338, 1985.

[5] Meyer, Tom, and Al Globus. "Direct manipulation of isosurfaces and
cutting planes in virtual environments." Department of Computer Science,
Brown University, 1993.

[6] H. Marin-Vega, G. Alor-Hernández and G. Zatarain-Cabad, "A brief
review of game engines for educational and serious games development,"
Language Learning and Literacy: Breakthroughs in Research and Practice,
pp. 447-469, 2020.

[7] S. G. Izard, J. A. J. Mendez, P. R. Palomera and F. J. Garcia-Penalvo,
"Applications of virtual and augmented reality in biomedical imaging,"
Journal of medical systems, vol. 43, no. 4, pp. 1-5, 2019.

[8] B. Faludi, E. I. Zoller, N. Gerig, A. Zam, G. Rauter and P. C. Cattin,
"Direct visual and haptic volume rendering of medical data sets for an
immersive exploration in virtual reality," in International Conference on
Medical Image Computing and Computer-Assisted Intervention, Springer,
2019, pp. 29-37.

[9] F. King, J. Jayender, S. K. Bhagavatula, P. B. Shyn, S. Pieper, T. Kapur,
A. Lasso and G. Fichtinger, "An immersive virtual reality environment
for diagnostic imaging," Journal of Medical Robotics Research, vol. 1, no.
1, 2016.

[10] G. Wheeler, S. Deng, N. Toussaint, K. Pushparajah, J. A. Schnabel, J. M.
Simpson and A. Gomez, "Virtual interaction and visualisation of 3D
medical imaging data with VTK and Unity," Healthcare technology letters,
vol. 5, no. 5, pp. 148-153, 2018.

[11] S. Rizzi, "Volume-based graphics and haptics rendering algorithms for
immersive surgical simulation," University of Illinois at Chicago, 2013.

[12] Reddivari and J. Smith, "VRvisu++: A Tool for Virtual Reality-Based
Visualization of MRI Images," in 2020 IEEE 44th Annual Computers,
Software, and Applications Conference (COMPSAC), IEEE, 2020, pp.
1129-1130.

[13] J. Zhang, Y. Lyu, Y. Wang, Y. Nie, X. Yang, J. Zhang and J. Chang,
"Development of laparoscopic cholecystectomy simulator based on Unity
game engine," in Proceedings of the 15th ACM SIGGRAPH European
Conference on Visual Media Production, 2018, pp. 1-9.

[14] P. Kalshetti, P. Rahangdale, D. Jangra, M. Bundele and C. Chattopadhyay,
"Antara: An interactive 3D volume rendering and visualization
framework," arXiv preprint arXiv:1812.04233, 2018.

[15] S. You, L. Hong, M. Wan, K. Junyaprasert, A. Kaufman, S. Muraki, Y.
Zhou, M. Wax and Z. Liang, "Interactive volume rendering for virtual

colonoscopy," in Proceedings. Visualization'97 (Cat. No. 97CB36155),
IEEE, 1997, pp. 433-436.

[16] M. B. Hoffensetz and C. N. Daugbjerg, "Volume visualization of medical
scans in virtual reality," 2018.

[17] D. Escobar-Castillejos, J. Noguez, R. A. Cardenas-Ovando, L. Neri, A.
Gonzalez-Nucamendi and V. Robledo-Rella, "Using Game Engines for
Visuo-Haptic Learning Simulations," Applied Sciences, vol. 10, no. 13,
2020.

[18] Williams, D. Cubiquity Voxel Engine [Source code].
https://github.com/DavidWilliams81/cubiquity [Accessed 09 12 2021].

[19] L. S. Rodrigues, J. Nyakatura, S. Zachow and J. H. Israel, "An Immersive
Virtual Paleontology Application," Haptics: Science, Technology,
Applications. EuroHaptics, pp. 478-481, 2022.

[20] S. Laine and T. Karras, "Efficient sparse voxel octrees–analysis,
extensions, and implementation," NVIDIA Corporation, 2010.

[21] J. de Vries, "LearnOpenGL - Transformations," [Online]. Available:
https://learnopengl.com/Getting-started/Transformations. [Accessed 21
02 2022].

[22] Coorg, S., & Teller, S. Real-time occlusion culling for models with large
occluders. In Proceedings of the 1997 symposium on Interactive 3D
graphics (pp. 83-ff), 1997.

[23] M. Barthet, A. Liapis and N. Georgios, "Open-ended evolution for
Minecraft building generation," IEEE Transactions on Games, 2022.

[24] C. Farhat and M. Lesoinne, "Automatic partitioning of unstructured
meshes for the parallel solution of problems in computational mechanics,"
International Journal for Numerical Methods in Engineering, vol. 36.5, pp.
745-764.

[25] Hu, H., Liu, M., Zhong, J., Deng, X., Cao, Y., & Fang, P. A Case Study
of the 3D Water Vapor Tomography Model Based on a Fast Voxel
Traversal Algorithm for Ray Tracing. Remote Sensing, 13(12), 2422,
2021.

[26] Duncan, D., Newman, B., Saslow, A., Wanserski, E., Ard, T., Essex, R.,
& Toga, A. VRAIN: Virtual reality assisted intervention for neuroimaging.
2017 IEEE Virtual Reality (VR), 467–468, 2017.

[27] Chheang, V., Saalfeld, P., Huber, T., Huettl, F., Kneist, W., Preim, B., &
Hansen, C. Collaborative Virtual Reality for Laparoscopic Liver Surgery
Training. 2019 IEEE International Conference on Artificial Intelligence
and Virtual Reality (AIVR), 1–17, 2019.

