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Abstract—Manual processing of tomographic data volumes, 

such as interactive image segmentation in medicine or 

paleontology, is considered a time-consuming and cumbersome 

endeavor. Immersive volume sculpting stands as a potential 

solution to improve its efficiency and intuitiveness. However, 

current open-source software solutions do not yield the required 

performance and functionalities. We address this issue by 

contributing a novel open-source game engine voxel library that 

supports real-time immersive volume sculpting. Our design 

leverages GPU instancing, parallel computing, and a chunk-based 

data structure to optimize collision detection and rendering. We 

have implemented features that enable fast voxel interaction and 

improve precision. Our benchmark evaluation indicates that our 

implementation offers a significant improvement over the state-of-

the-art and can render and modify millions of visible voxels while 

maintaining stable performance for real-time interaction in 

virtual reality.  
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I. INTRODUCTION 

Tomographic imaging techniques, such as CT, MRI, and 
ultrasound, are important in a variety of fields including 
medicine, paleontology, and engineering [1]. Advances in this 
area have enabled the non-destructive exploration of internal 
structures, providing valuable information for practitioners in 
different fields. Material separation and labeling of relevant 
structures of interest in processes such as image segmentation 
are necessary to provide an understanding of such data. Despite 
recent developments in the automated segmentation of 
tomographic data volumes, manual processes are necessary for 
complex scenarios that require human expertise [2]. Interactive 
image segmentation of tomographic data, including volume 
editing, is cumbersome as current solutions utilize slice-based 
2D tools for interacting with 3D data [3]. Volume sculpting 
poses as a potential interaction metaphor that could improve the 
efficiency of interactive image segmentation. Virtual reality 
would be an evident medium for volume sculpting as it enables 
direct manipulation in the 3D space and may support better 
understanding and decision-making in such tomographic 
imaging operations [4][5].  

Since tomographic imaging practitioners engage in 
workflows that are unique to their fields, custom tools must be 

designed to cater to their specific requirements. Game engines 
are widely regarded as the most practical and cost-effective 
instrument to enable researchers in designing custom solutions 
[6]. However, current game engine voxel libraries do not yield 
the performance and functionalities necessary to enable volume 
sculpting in virtual reality. The present study aims to address this 
gap by answering the following research question: “Can a novel 
open-source game engine voxel library enable volume sculpting 
in virtual reality?”. In the following section, we describe the 
state-of-the-art and its limitations to the proposed application. 
Next, we describe the design of a novel open-source game 
engine voxel library that supports real-time immersive volume 
sculpting. Finally, we evaluate our design through benchmark 
comparison against the state-of-the-art and discuss the impact of 
our contribution. 

II. BACKGROUND 

Relevant literature ranges at different points of significance 
to our research question’s criteria. Most contributions focus on 
displaying tomographic data in VR scenes, but their interactivity 
is limited to scene visualization and transformation [7]. Faludi 
et al. present a method for the direct visual and haptic rendering 
of volumetric medical data sets in virtual reality [8]. King et al. 
created an application that renders CT scans through the 
communication between 3D Slicer and Unity [9]. Wheeler et al. 
employed OpenGL context sharing to display VTK objects in a 
Unity scene [10]. Other works enable volume editing in other 
specific contexts but are not open-source libraries. Rizzi 
implemented volume deformation within an immersive surgical 
simulation  [11]. Reddivari and Smith created a visualization 
tool for MRI images that allows for volume editing [12]. Zhang 
et al. incorporated haptic feedback into their surgery simulator 
by using Unity and Nvidia Flex [13]. Other works implement 
direct volume rendering, which is used widely in medical 
visualization tools [14] [15] [16]. Escobar-Castillejos et al. 
describe an architecture to build a visuo-haptic application as a 
Unity plugin  [17]. In terms of open-source solutions, Williams 
introduces Cubiquity, a voxel engine that shares many 
similarities with the popular Minecraft game [18]. Cubiquity 
provides classes to build and manage voxel data, including 
tomographic image slices. Although platform-independent, 
Cubiquity includes a Unity plugin integration. 



 

 

Amongst the works listed above, Cubiquity stands as the 
closest available alternative to the aforementioned criteria, but 
literature indicates that the library has performance limitations 
when supporting real-time voxel interaction in virtual reality. 
Duncan et al. integrated Cubiquity into their intervention and 
“faced many challenges in the display and manipulation” of a 
scaled-down “MRI with 256 voxels per dimension” [26]. 
Similarly, Chheang et al. reported that “low FPS happens during 
the cutting simulation” as they tracked “collision 
synchronization noticeably lagging behind the modifications of 
cutting” [27].   Similar performance issues were described by 
Rodrigues et al. [19]. Thus, we contribute VoxSculpt as a novel 
voxel library aimed to advance the state-of-the-art. 

III. METHODOLOGY 

In this section, we discuss the design and implementation of 
a custom voxel library as a proposed solution for virtual reality 
volume sculpting in the Unity game engine. In the following 
subsections, we describe our library’s data structure, volume 
modifiers, ray casting, physic colliders, and rendering modules. 
Under Data Structure, we present the library’s voxel storage, 
state management, chunk organization, and I/O operations 
leveraging Unity Jobs. Next, we describe the implementation of 
four Volume Modifiers: cutting, restoring, filtering, and undoing. 
Under Ray Casting, we describe how our VoxSculpt enables fast 
volume editing by casting a fixed-size ray to acquire voxels 
within the probe’s reach. Then, Physics Colliders are presented 
as a solution for higher sculpting precision through the detection 
of collisions between volume voxels and mesh colliders. Finally, 
Rendering describes the use of GPU instancing for optimal 
performance.  Fig. 1 summarizes our library’s design. 
Subsequently, this section details our implementation. 

 

 

Fig. 1. VoxSculpt’s implementation concept from a user’s perspective. 

A. Data structure 

In VoxSculpt’s data structure, voxels are densely stored in a 
3D array for permanent storage. Each voxel stores its index 
space position, 8-bit grayscale color, and state: Visible, Solid, or 
Removed. State changes do not remove voxels from the data 
structure. The voxel grid has been designed to be permanently 
dense in order to support a restoring tool that requires collision 
detection on removed voxels. An octree implementation was 
considered, but this approach yielded low performance in 
Cubiquity as octree regeneration upon volume updates and the 
full-depth traversal are costly operations, especially for dense 
grids. Meanwhile, the chunk-divided array delivers direct access 
to volume voxels. In our implementation, chunks are 
represented by sparse storage [20], composed of multiple 
supporting hash maps storing visible voxels inside of visible 
chunks (see Fig. 2). More information about the supporting data 
structures is available in the source code annotations. 

 

Fig. 2. A 256x256x12 voxel grid divided into 16x16 visible chunks. White 

labels indicate the index space position (x,y,z) inside the volume. 

Chunks enclose voxels inside their cubic shape. When an 
imported volume is not fully dividable by chunks, our 
application evens out incomplete chunks by adding empty 
voxels. Resizing only has an impact on updating the compute 
buffer described in the Rendering subsection. These buffers are 
updated when modifying the voxel grid and are mapped to the 
volume’s chunks. When scaling down a chunk, the application 
must iterate over smaller compute buffers, which leads to 
numerous computationally-expensive I/O operations to the GPU. 
Oversizing a chunk reduces the number of compute buffers. 
However, when an operation modifies a chunk, more voxels 
must be sent to the GPU, which increases I/O operation time.  

All data structures used in the dense and sparse storage 
leverage Unity.Collections, which integrates native containers in 
the Unity Entities package. Dense storage implements a 1D 
NativeArray,  whereas sparse storage uses a 
NativeMultiHashMap  and several regular NativeHashMaps. 
The entire application solely employs 1D arrays. 3D positions 
from 1D indices, and vice-versa, are calculated at runtime. 
Starting with (x:0, y:0, z:0), columns are filled first to match 
Unity’s positive x-direction, followed by rows, matching the 
positive y-direction, followed by depth in the positive z-
direction. Unity Jobs’ native collections provide fast memory 
allocation outside of the managed C# runtime, which prevents 
garbage collector memory reallocation. Through the allocation 



 

 

of a single memory block, the data is also cache-coherent, which 
may result in fewer cache misses during cutting or restoring 
operations. From a future perspective, 1D arrays are also needed 
to parallelize the application on a GPU, since frameworks like 
Nvidia CUDA and OpenCL demand 1D array input. Native 
containers only work with non-reference types to enforce safety. 
Therefore, voxel data is stored inside of a struct. In general, the 
application avoids creating new C# objects, uses object pooling, 
and pre-allocates memory whenever possible. 

B. Volume Modifiers 

VoxSculpt provides four ways to modify a volume: cutting, 
restoring, filtering, and undoing. 

1) Cutting and restoring 
We define cutting as removing a voxel, whereas restoring 

means reestablishing a removed voxel. These operations require 
the management of voxel states (dense storage) and visible 
voxels list (sparse storage). Fig. 3 illustrates the process of 
cutting and restoring a single voxel. 

 

Fig. 3. Illustration of the process when removing or adding a voxel. 

In this scenario, Voxel A is only removed under the Visible 
state. Otherwise, neighbor voxels (B1 to B4) are checked for the 
Solid state, in which case that voxel becomes visible. The ruleset 
for adding a voxel is larger to prevent visible voxel artifacts 
when re-adding voxels. In Fig. 3, the bottom-left grid illustrates 
the process of making Voxel B4 solid when re-adding Voxel A, 
which would create unnecessary voxel rendering. Therefore, 
when re-adding Voxel A, the neighbors C1 to C3 of a neighbor 
Voxel B are additionally checked. If B4 is visible, and if C1 to 
C3 are all visible or solid, Voxel B4 becomes solid. If one of the 
neighbors of Voxel A (B1 to B4) is removed, Voxel A becomes 
visible. If Voxel A is already visible, Voxel A becomes solid when 
all neighbors are solid or visible. 

2) Parallel filtering 
Filtering enables users to batch-remove voxels that match a 

specified intensity value range. Unity Jobs was leveraged to 
accelerate through fast thread creation. Worker threads are 
equally distributed on available CPU to minimize context 
switching. Threads are reused to avoid recreation, and Unity 
Burst’s compiler optimizes each job system for performance. 
The filtering process is divided into three phases as 
demonstrated in Fig. 4. 

 

Fig. 4. Process when filtering a value or a value range. 

Unity Jobs operates in individual chunks. In the first phase, 
values are removed from a chunk, modifying the volume’s dense 
storage. In the second phase, voxels that should be made visible 
after removal are identified. These voxels are added to the 
volume in the last phase. Threads merge between each phase, 
except for the first two phases, which are executed in parallel. 

 

Fig. 5. Data structure at each phase when filtering value A.  

Fig. 5 demonstrates the effects of four phases on the data 
structure. On the leftmost grid, Value A stands as a voxel that 
has been marked for filtering. Next, this voxel is removed from 
dense storage, leaving a blank value that would violate 
previously described rules. To address this issue, the next phase 
identifies voxels that should be made visible (B1-B4). The state 
of these voxels is then set to visible in the final phase. In this last 
stage, these voxels are also added to sparse storage, which holds 
visible voxels that should be rendered. 

This process has been divided into discrete phases as parallel 
work is not possible on sparse storage data structures. Indeed, 
parallel access to sparse storage hash maps would create race 
conditions and result in undefined behavior. Thread-safe access 
is achievable, but it would be accomplished by semaphores 
which are blocking calling threads, leading to performance 
decreases. Therefore, phase three exists because visible voxels 
cannot be identified in the second phase due to chunk-edge 
problems (see Fig. 6). 



 

 

 

Fig. 6: Chunk-edge problem when filtering a value A. 

Fig. 6 shows a problem that can occur when trying to find 
visible voxels in the second phase. If a job J1 works on Chunk 1 
while another job J2 is working simultaneously on Chunk 2, J1 
cannot determine if B3 is a visible voxel because B3 might be 
removed from job J2. Therefore, phase three depends on phase 
one. Phase three uses a custom data structure for saving 
identified visible voxels because all jobs must write in parallel 
on the same data structure. 

The data structure for identified visible voxels storage is 
conceptionally a 2D array, although the actual implementation 
utilizes a 1D array. Each column stores 1D indices of identified 
visible voxels and is mapped to a chunk. Thus, all jobs can 
simultaneously write to the array. To accelerate adding and 
iterating processes, the lengths of the stored identified visible 
voxels are also stored. Each column is pre-allocated with the 
number of voxels inside a chunk. The last phase adds these 
voxels to the visible voxels list. 

3) Parallel cutting and restoring 
For coarse but fast cutting and restoring, a parallel 

alternative is implemented. This method currently only works 
with cubes, but a rectangular cuboid or other primitives could be 
added. This method divides cubes into layers to feed the jobs 
with separated data (see Fig. 7). 

 

 

Fig. 7. The parallel cutting process. Blue: Hull layer. Red: Inner layers. 

When voxels in the inner layers are removed, the hull layer 
job adds visible voxels to the volume. The process works 
similarly to the filtering process. When restoring, the inner layer 

jobs add voxels by making them solid, while the hull layer job 
makes the voxels visible. 

4) Undoing 
The undo functionality allows users to reverse manual voxel 

operations. Removed or restored voxels associated with their 
respective actions are added as commands in a ring buffer 
having a size of 262.144 ( 218 ), a limit that can be 
programmatically adjusted. When users call the undo function, 
recent commands are reversed, beginning with the last 
command added to the ring buffer and continuing with the most 
recently added operations until the buffer is emptied. 

C. Ray Casting 

.  

Fig. 8. The process of ray casting. 

Fig. 8 illustrates our ray casting implementation: As shown 
in Segment A, a fixed-size step checks if a point is inside a voxel. 
To check if a point in world space (B) is inside a voxel, the script 
attempts to retrieve the voxel by a voxel index coordinate. To 
get the voxel index, the world space point is transformed to 
volume local space (C). The volume has its origin in the lower-
left corner, which is aligned with the origin of the local 
coordinate system. After this step, the inverse rotation of the 
volume is applied to point (D). This mimics a situation where a 
volume would be in an axis-aligned pose. Next, the components 
of the index coordinate are calculated by dividing each 
component of the rotated point with the scale of a voxel, 
followed by applying the Math.Floor()  function to that result.  

D. Physic Colliders 

When sculpting a volume, users can interact with the volume 
using ray casting or voxel physic colliders. Ray casting suffers 
from inaccuracy as numerous ray casts in multiple directions 
would be required to fully sample visible voxels, and its 
algorithm would need to delete voxels that enclose the probe, 
which would only be possible for primitive shapes. For a more 
accurate and robust solution, we have implemented physics 
colliders to enable the possibility of detecting contact between 
any mesh collider and volume voxels (see Fig. 9). Higher 
sculpting accuracy can only be achieved by supporting physics 



 

 

colliders. To use this feature, users only need to add a 
VolumeCollidable script to any Game Object. This action 
transforms the entity into a probe that can listen to Unity’s native 
Collision events and access collided voxel data in its 
ColliderData component.  

 

 

Fig. 9. An example of a custom mesh collider (a chisel) cutting a volume. 

A local approach was chosen as adding individual 3D 
objects (i.e., Unity game objects) and colliders for millions of 
voxels would heavily impact performance. To prevent the 
creation of an unnecessary number of colliders, 
VolumeCollidable  continuously checks for voxels inside the 
collider’s axis-aligned bounding box (AABB). Checking is 
performed by stepping with the size of a voxel over the space of 
the AABB. If a voxel is detected, the BoxCollider  component’s 
game object is aligned with the voxel mesh. Game objects of all 
possible colliders are pre-allocated to create an object pool. For 
example, for an AABB that can enclose a maximum of 16 voxels, 
16 game objects are allocated along with their respective box 
colliders. When aligning a collider, the script uses a game object 
from this object pool. Only box colliders that are aligned with 
volume voxels are enabled while the remaining Box Colliders 
are deactivated (see Fig. 10). 

 

Fig. 10. Collision model comparison. Left: Ray casting method. Right: 

Collidable method. While ray casting does not detect solid (yellow) voxels, the 

collidable method detects all voxels colliding with the sphere mesh. Red voxel 

borders show enabled colliders, and “C” voxels receive collisions. 

Unity game objects are never deactivated to prevent 
performance declines. When aligning a collider, a ColliderData 
 component is added to its game object to hold voxel data. Fig. 
11 illustrates this process within a Unity scene.  

  

Fig. 11. Visualization of the enabled colliders when cutting the volume with 

a “VolumeCollidable”-object. Left: The volume viewed from the outside. 

Right: The same volume as seen from the inside. 

E. Rendering 

VoxSculpt limits rendering to visible voxels that are stored 
in sparse storage. Moreover, GPU instancing is leveraged to 
further improve voxel rendering performance (see Fig. 12). 

 

Fig. 12. VoxSculpt’s rendering cycle process. 

Instancing reduces the amount of data sent to the GPU, 
which also reduces state switches inside the graphic API. All 
relevant rendering data is stored on the GPU, which includes 
voxel position in index space, voxel color, voxel meshes, and 
the transform matrix for transforming the vertices to the correct 
world space coordinate. The GPU then draws visible voxels 
using a shader.  

Upon user-initiated volume modifications, the GPU only 
receives voxel data from chunks that were modified in the last 
frame in order to maintain stability in the cutting-rendering 
process. Once the GPU receives this data, modified chunks are 
reset to their unmodified state. Upon volume initialization, 
chunks containing visible voxels are marked as modified. 

In VoxSculpt, the shader not only renders voxels but also 
translates them to their correct positions. GPU instancing 
optimizes this process through parallel execution, given that the 
GPU receives the volume transform matrix whenever the 
volume’s Unity transform object changes. This matrix not only 
transforms the voxel mesh’s origin to the correct world position, 
but it also repositions the mesh vertices relatively to that point 
in the correct coordinate. This is achieved by overwriting the last 
column in that matrix with the translation vector of the 
transformed world position of the voxel origin [21]. Without this 
step, only the world position of the voxel origin would have the 
same rotation as the volume, but not the voxel mesh when 



 

 

rotating the volume. VoxSculpt fully supports volume scaling, 
rotation, and translation.  

 

  

Fig. 13. Left: Voxels rendered with only their color value. Right: Voxels 

rendered with Phong shading 

Our shader applies Phong shading to individual voxels to 
improve visual salience between neighboring voxels. Fig. 13 
compares voxel rendering before (left) and after (right) applying 
Phong shading. Although this effect improves voxel 
differentiation, one could argue that it distorts original color 
values that may be of importance. Light intensity and color in 
the Unity scene have an impact on appearance. This shading also 
introduced screen door and Moiré effects when viewing the 
image from a certain distance. Activating 8x MSAA reduced 
these effects and yielded a cleaner image.   

F. Source Code and User Documentation 

All relevant code has been evaluated with unit tests and fully 
commented. We have created user documentation and a Getting 
Started guide with code examples using available prefabs, 
scenes, and example volume data. The repository can be 
accessed at: https://github.com/lsrodri/VoxSculpt  

IV. RESULTS 

We present the results of benchmark tests comparing 
VoxSculpt against Cubiquity. This evaluation assesses these 
libraries’ performance for different voxel operations and 
indicates their performance limitations. Benchmark results were 
extracted from a development build and analyzed with Unity’s 
editor profiler in an isolated testing environment. For both voxel 
libraries, we compared the best benchmark results out of 10 runs. 
The application build was performed under the following 
settings: Resolution: 1440x1600; Quality setting: high; MSAA: 
disabled; Default contact offset: 0.0001; Fixed physic time step: 
0.01111; VSync: 90 fps. The physic time step was set to match 
the frame rate, which was limited to 90 fps. The system used for 
the benchmarks had the following configuration: Intel Core i5-
10400 with six cores, each having 2.9 to 4.3 GHz; 16 GB DDR4-
2666 RAM; GeForce RTX 3060 with 12GB GDDR6. According 
to the Unity profiler, memory usage after starting the application 
and initializing the volume was 1.84 GB.  

A. General Performance Compared to Cubiquity 

To compare VoxSculpt’s and Cubiquity’s general 
performance, we integrated both libraries into the benchmarking 
command line tool to automatize the benchmark process. Table 
I summarizes how VoxSculpt outperforms Cubiquity in all 4 
operations.  

TABLE I: PERFORMANCE COMPARISON OF VOXSCULPT AND CUBIQUITY 

Operation/Library Cubiquity VoxSculpt 

Initialize (seconds) 39.139 2.275 

Delete (seconds) 0.283 0.123 

Add (seconds) 0.295 0.145 

Modify (seconds) 0.295 0.015 

B. Sculpting Performance Compared to Cubiquity 

To compare actual sculpting performance, we applied the 
exact setup and implementation used in Cubiquity. Wherever it 
was necessary. we replaced volume and method calls with their 
VoxSculpt equivalents.  

 
 

Fig. 14: Cutting performance of the ray cast (A), the collider (B1) with collider 

count (B2), and the parallel methods (C). Red lines mark the start and end of 

each benchmark. 

1) Ray cast method 

We compared cutting in VoxSculpt and Cubiquity by setting 
the probe size in both systems to 0.06m, which removes 4,139 
voxels upon collision. VoxSculpt delivers a steady 90 FPS 
performance, as Graph A of Fig. 14 demonstrates. Moreover, 
the graph indicates that a larger probe would be feasible under 
this criterium as the application mostly waits for VSync. On the 
other hand, Fig. 15 shows that Cubiquity cannot deliver stable 
framerates.  

 

Fig. 15. Cubiquity performance using a 0.06m probe. 

2) Collider method 

Since the collider method has been designed for operations 
that require higher precision at the expense of lower speed, the 
probe was rescaled to 0.025m in both libraries. Under this 
configuration, cutting removes 504 voxels per contact. Graph 
B1 in Fig. 14 shows that the application provides a steady 90 
FPS experience. Graph B2 shows the number of colliders in the 
scene at each moment. The scene contained a maximum of about 
1,300 enabled colliders and 811 contact points. The apparent 
jitter is due to the physic time at initialization, which did not 
occur during collision. The spike at the start of B1 comes from 
initializing the object pool of collidable objects. Since changing 
the size of the collidable object also results in a different number 

https://github.com/lsrodri/VoxSculpt


 

 

of possible colliders, this must be done when changing the size 
of the collidable or volume. 

3) Parallel cutting 

Parallel cutting uses ray casting for collision detection. We 
scaled a cubic probe to 0.1m, which removes 35,937 voxels per 
collision. Despite this higher voxel count, this method still 
provided a solid 90 FPS experience as shown in Graph C of Fig. 
14. Meanwhile Cubiquity performs at 50 FPS under similar 
conditions. The graph also shows that there are no performance 
spikes, except for the period where the profiler was set in the 
background to stop the recording in Unity’s main window, 
which is irrelevant to this measure. 

C. Performance of Undo, Filtering, and Volume 

Initialization 

We replicated the setup and implementation of the previous 
benchmark test to gather data about the performance of the undo, 
filtering, and initialization operations. 

1) Undo 

As described earlier, the undo operation reestablishes all 
voxels in the buffer. In this test, the voxel buffer size for the 
undo operation varied. The undo operation was executed after 
cutting the volume with a 0.05m probe through the ray cast 
method. Results are presented in Table I. 

TABLE II: PERFORMANCE RESULTS OF THE UNDO OPERATION 

Voxel buffer size 131,072 262,144 524,288 1,048,576 

Time (seconds) 0.05 0.10 0.19 0.37 

2) Filtering 

We executed two filtering operations utilizing different 
value ranges. We reinitialized the volume before each operation. 
The results are summarized in Table III. 

TABLE III. PERFORMANCE RESULTS OF THE FILTERING OPERATION 

Value Range 0-42 0-255 

Time (seconds) 1.13 1.24 

 

3) Initialization 

The initialization test includes rendering and reading our 
proprietary volume file. Volume initialization was performed at 
the 6:59 second mark. 

D. Performance Limitations 

This section details circumstances under which VoxSculpt is 
unable to render a voxel volume at 90 FPS. The setup and 
implementation from previous sections were used for all cutting 
performance tests in this section. 

 

Fig. 16. Performance limitations of the ray cast, collider, and parallel cutting 

methods. Red lines mark the start and end of each benchmark. 

1) Ray cast method 

Graph A in Fig. 14 shows the ray cast method’s cutting 
performance limitation when setting the probe scale to 0.087m, 
which removes 11,459 voxels per cut. The limiting factor of this 
method is the iterative removal of voxels. 

2) Collider method 

Graph B1 in Fig. 14 displays benchmark results for cutting 
with the collider method. The probe’s scale was set to 0.03, 
which removes 792 voxels per collision. Graph B2 shows that 
about 1,900 enabled colliders were used at most. The number of 
colliders is the limiting factor of this method, which depends on 
the volume and the collidable object scales. An excessive 
number of colliders would cause the collidable script to iterate 
over too many possible colliders. Updating the colliders’ 
corresponding game objects is a particularly demanding task. 
With fewer enabled colliders to update, performance improves 
even when the script must iterate over the entire AABB. As 
shown in the profiler graph, performance increases over time as 
the cutting object incurs in smaller steps and does not have to 
create colliders where voxels are already removed. The 
calculation of Unity’s contact points modestly improves over 
time.  

3) Parallel cutting 

Graph C in Fig. 14 presents benchmark results for parallel 
cutting. The cubic probe’s scale was set to 0.15, removing 
132,651 per cut. Here, the limiting factor is the number of cores 
available for executing the cube layers mentioned in the 3) 
Parallel cutting and restoring subsection. Thread execution 
time increases along with the number of voxels. Rendering 
eventually limits the parallel cutting operation. 

4) Rendering 
Another limiting factor is the number of visible voxels that 

the application can render. Our parallel cutting benchmark, 
using a cubic probe of 0.2m shows that the application can 
handle 2,476,484 visible voxels. At the end of the operation, 
rendering is constantly slightly below 90 FPS as Unity’s 
rendering thread must wait for its main thread and vice versa.  

 

 

 



 

 

TABLE IV. RENDERING LIMITATION OF 2,476,484 VISIBLE VOXELS AFTER 

VOLUME INITIALIZATION AND AFTER APPLYING A FILTER OPERATION WITH A 

VALUE RANGE OF 0-42. 

 After initialization After filter operation (0-42) 

Visible 
chunks 

2,344 4,197 

Visible voxels 654,936 1,225,995 

 

Table IV summarizes visible voxel variation after volume 
initialization and the application of a filter operation of a 0-42 
value range. The 512x348x176 voxel volume used for these 
benchmarks stores 31,358,976 voxels, which are divided into 
8,712 chunks, represented by a 33x22x12 chunk grid. 

TABLE V. APPROXIMATE CUTTING PERFORMANCE LIMITS OF CUBIQUITY 

AND VOXSCULPT UNDER A STABLE OF 90 FPS 

Library Cubiquity VoxSculpt VoxSculpt VoxSculpt 

Method Ray cast Collider Ray cast Parallel 

Cutting 
voxel 
limit  

4,139 792 11,459 132,651 

Object 
scale 

0.06 0.03 0.087 0.15 

 

The most relevant data from Table V demonstrates that 
VoxSculpt delivers improved volume sculpting performance 
compared to Cubiquity. Using the Ray Casting method, 
VoxSculpt can delete about 2.7 times more voxels than 
Cubiquity while still maintaining a stable 90 FPS experience. 

V. DISCUSSION 

Benchmark comparison results demonstrate that VoxSculpt 
outperforms Cubiquity in measured operations. Sculpting 
operations are faster because they only access dense storage and 
write new color values to the 3D array without the creation or 
removal of visible voxels. The same rationale applies to the 
volume initialization since this method primarily accesses the 
3D array, followed by making the volume’s surfacing voxels 
visible, which translates to adding voxels to the visible voxel list. 
In general, performance is heavily affected by calculations that 
ensure that only visible voxels are shown.  

Cubiquity still outperforms VoxSculpt’s rendering in the 
parallel cutting operation as Graph C in Fig. 14 demonstrates. 
This issue might be attributed to a different rendering schema, 
as Cubiquity only renders visible voxel faces, and it presumably 
does not render occluded voxels. VoxSculpt renders cubes with 
12 triangles and renders voxels that are occluded by other voxels, 
which generates a significant calculation overhead and is 
compensated by GPU Instancing. 

VoxSculpt has limitations regarding the maximum size of the 
tomographic dataset volumes that can be rendered and sculpted. 
This is especially true for the collider method, necessary for 
precise cutting. Table 5 summarizes the number of voxels that 
can be cut while still maintaining a stable 90FPS performance. 

VoxSculpt’s rendering capacity limitation could potentially 
be addressed through chunk occlusion culling [22] through the 
flood fill algorithm [23]. Another approach to improve rendering 
would be to implement greedy meshing [24] to reduce the 
number of rendered triangles for each voxel. 

Another limitation is the maximum number of supported 
colliders. A pragmatic approach to increase this limit would be 
to schedule the collider updating algorithm in parallel using 
Unity DOTS to replace the current game objects with cache-
coherent entities. AABB testing could also be divided into 
chunks and assigned to Unity Jobs, which has the potential issue 
of being limited to primitive shape colliders.  

Ray casting accuracy is another candidate for improvement. 
This issue is mostly unnoticeable under sufficiently large 
volume resolution and camera distance, but a closer distance 
could show that the ray casting method misses contact points 
while nearing corners. Better accuracy could be achieved 
through an algorithm based on the Digital Differential Analyzer 
as it is a fast and robust choice for a tiled object like a voxel grid 
[25]. 

VI. CONCLUSION 

In this article, we have presented VoxSculpt, a novel open-
source voxel library for tomographic volume sculpting in virtual 
reality. Our library is built on top of a popular game engine and 
leverages GPU instancing, parallel computing, and a native 
chunk-based data structure to optimize rendering performance. 
Our benchmark evaluations indicate that VoxSculpt offers a 
significant improvement over the state-of-the-art and can render 
and modify millions of visible voxels for stable real-time 
interaction in virtual reality. We have also implemented a range 
of new features such as filtering, undoing, restoring, and 
improved sculpting precision. 

By enabling real-time immersive volume sculpting, 
VoxSculpt has the potential to improve the efficiency and 
intuitiveness of manual processing of tomographic data volumes, 
such as interactive image segmentation. As we publish 
VoxSculpt as a freely-available resource, we anticipate that this 
voxel library might assist researchers in creating custom 
solutions for tomographic imaging practitioners.  

ACKNOWLEDGMENT 

The author acknowledges the support of the Cluster of 

Excellence »Matters of Activity. Image Space Material« funded 

by the Deutsche Forschungsgemeinschaft (DFG, German 

Research Foundation) under Germany's Excellence Strategy – 

EXC 2025 – 390648296. 

REFERENCES 

[1] J. K. Iglehart, "The new era of medical imaging—progress and pitfalls," 
New England Journal of Medicine, vol. 354.26, pp. 2822-2828, 2006.  

[2] H. Ramadan, C. Lachqar, and H. Tairi, “A survey of recent interactive 
image segmentation methods,” Comp. Visual Media, vol. 6, no. 4, pp. 
355–384, Dec. 2020. 

[3] Chowdhary, C. L., & Acharjya, D. P., "Segmentation and feature 
extraction in medical imaging: a systematic review.," Procedia Computer 
Science, vol. 167, pp. 26-36, 2020. 

[4] E. Hutchins, l. Hollan and D. A. Norman, "Direct manipulation 
interfaces," Human–computer interaction, vol. 1(4), pp. 311-338, 1985. 



 

 

[5] Meyer, Tom, and Al Globus. "Direct manipulation of isosurfaces and 
cutting planes in virtual environments." Department of Computer Science, 
Brown University, 1993. 

[6] H. Marin-Vega, G. Alor-Hernández and G. Zatarain-Cabad, "A brief 
review of game engines for educational and serious games development," 
Language Learning and Literacy: Breakthroughs in Research and Practice, 
pp. 447-469, 2020.  

[7] S. G. Izard, J. A. J. Mendez, P. R. Palomera and F. J. Garcia-Penalvo, 
"Applications of virtual and augmented reality in biomedical imaging," 
Journal of medical systems, vol. 43, no. 4, pp. 1-5, 2019.  

[8] B. Faludi, E. I. Zoller, N. Gerig, A. Zam, G. Rauter and P. C. Cattin, 
"Direct visual and haptic volume rendering of medical data sets for an 
immersive exploration in virtual reality," in International Conference on 
Medical Image Computing and Computer-Assisted Intervention, Springer, 
2019, pp. 29-37. 

[9] F. King, J. Jayender, S. K. Bhagavatula, P. B. Shyn, S. Pieper, T. Kapur, 
A. Lasso and G. Fichtinger, "An immersive virtual reality environment 
for diagnostic imaging," Journal of Medical Robotics Research, vol. 1, no. 
1, 2016.  

[10] G. Wheeler, S. Deng, N. Toussaint, K. Pushparajah, J. A. Schnabel, J. M. 
Simpson and A. Gomez, "Virtual interaction and visualisation of 3D 
medical imaging data with VTK and Unity," Healthcare technology letters, 
vol. 5, no. 5, pp. 148-153, 2018.  

[11] S. Rizzi, "Volume-based graphics and haptics rendering algorithms for 
immersive surgical simulation," University of Illinois at Chicago, 2013. 

[12] Reddivari and J. Smith, "VRvisu++: A Tool for Virtual Reality-Based 
Visualization of MRI Images," in 2020 IEEE 44th Annual Computers, 
Software, and Applications Conference (COMPSAC), IEEE, 2020, pp. 
1129-1130. 

[13] J. Zhang, Y. Lyu, Y. Wang, Y. Nie, X. Yang, J. Zhang and J. Chang, 
"Development of laparoscopic cholecystectomy simulator based on Unity 
game engine," in Proceedings of the 15th ACM SIGGRAPH European 
Conference on Visual Media Production, 2018, pp. 1-9. 

[14] P. Kalshetti, P. Rahangdale, D. Jangra, M. Bundele and C. Chattopadhyay, 
"Antara: An interactive 3D volume rendering and visualization 
framework," arXiv preprint arXiv:1812.04233, 2018.  

[15] S. You, L. Hong, M. Wan, K. Junyaprasert, A. Kaufman, S. Muraki, Y. 
Zhou, M. Wax and Z. Liang, "Interactive volume rendering for virtual 

colonoscopy," in Proceedings. Visualization'97 (Cat. No. 97CB36155), 
IEEE, 1997, pp. 433-436. 

[16] M. B. Hoffensetz and C. N. Daugbjerg, "Volume visualization of medical 
scans in virtual reality," 2018. 

[17] D. Escobar-Castillejos, J. Noguez, R. A. Cardenas-Ovando, L. Neri, A. 
Gonzalez-Nucamendi and V. Robledo-Rella, "Using Game Engines for 
Visuo-Haptic Learning Simulations," Applied Sciences, vol. 10, no. 13, 
2020.  

[18] Williams, D. Cubiquity Voxel Engine [Source code]. 
https://github.com/DavidWilliams81/cubiquity [Accessed 09 12 2021]. 

[19] L. S. Rodrigues, J. Nyakatura, S. Zachow and J. H. Israel, "An Immersive 
Virtual Paleontology Application," Haptics: Science, Technology, 
Applications. EuroHaptics, pp. 478-481, 2022.  

[20] S. Laine and T. Karras, "Efficient sparse voxel octrees–analysis, 
extensions, and implementation," NVIDIA Corporation, 2010.  

[21]  J. de Vries, "LearnOpenGL - Transformations," [Online]. Available: 
https://learnopengl.com/Getting-started/Transformations. [Accessed 21 
02 2022]. 

[22] Coorg, S., & Teller, S. Real-time occlusion culling for models with large 
occluders. In Proceedings of the 1997 symposium on Interactive 3D 
graphics (pp. 83-ff), 1997.  

[23] M. Barthet, A. Liapis and N. Georgios, "Open-ended evolution for 
Minecraft building generation," IEEE Transactions on Games, 2022.  

[24] C. Farhat and M. Lesoinne, "Automatic partitioning of unstructured 
meshes for the parallel solution of problems in computational mechanics," 
International Journal for Numerical Methods in Engineering, vol. 36.5, pp. 
745-764.  

[25] Hu, H., Liu, M., Zhong, J., Deng, X., Cao, Y., & Fang, P. A Case Study 
of the 3D Water Vapor Tomography Model Based on a Fast Voxel 
Traversal Algorithm for Ray Tracing. Remote Sensing, 13(12), 2422, 
2021. 

[26] Duncan, D., Newman, B., Saslow, A., Wanserski, E., Ard, T., Essex, R., 
& Toga, A. VRAIN: Virtual reality assisted intervention for neuroimaging. 
2017 IEEE Virtual Reality (VR), 467–468, 2017. 

[27] Chheang, V., Saalfeld, P., Huber, T., Huettl, F., Kneist, W., Preim, B., & 
Hansen, C. Collaborative Virtual Reality for Laparoscopic Liver Surgery 
Training. 2019 IEEE International Conference on Artificial Intelligence 
and Virtual Reality (AIVR), 1–17, 2019.

 


