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Figure 1: Our study compares visual and visuohaptic sensorymodality encoding conditions onmemory retention of tomographic
images. Results indicate that visuohaptic integration enhances retention, reducing error rates and shortening response times.

Abstract
Scientific visualization and tomographic imaging techniques have

created unprecedented possibilities for non-destructive analyses of

digital specimens in morphology. However, practitioners encounter

difficulties retaining critical information from complex tomographic

volumes in their workflows. In light of this challenge, we inves-

tigated the effectiveness of visuohaptic integration in enhancing

memory retention of morphological data. In a within-subjects user

study (N=18), participants completed a delayed match-to-sample

task, where we compared error rates and response times across

visual and visuohaptic sensory modality conditions. Our results
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indicate that visuohaptic encoding improves the retention of to-

mographic images, producing significantly reduced error rates and

faster response times than its unimodal visual counterpart. Our

findings suggest that integrating haptics into scientific visualization

interfaces may support professionals in fields such as morphology,

where accurate retention of complex spatial data is essential for

efficient analysis and decision-making within virtual environments.
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1 Introduction
In morphology, the study of form and structure of organisms has

been revolutionized by recent developments in imaging and visu-

alization technologies, enabling practitioners to create highly de-

tailed digital models of fossils for non-destructive specimen analysis

[Cunningham et al. 2014; Racicot 2016]. However, despite the trans-

formative impact of digital methods on morphology, interacting

with tomographic fossil data remains complex and labor-intensive.

Automated imaging processing methods are seldom suitable for

paleontological datasets due to their complexity and the challenge

of applying generalized models to highly variable fossil specimens

[Carvalho et al. 2020; Toulkeridou et al. 2023]. Consequently, mor-

phology researchers must manually process regions of interest

across numerous tomographic slices, which places significant cog-

nitive demands on spatial understanding and memory retention

[Maga 2023; Siqueira Rodrigues et al. 2023].

One of the most cognitively demanding requirements in the dig-

ital morphology workflow is the ability to mentally represent and

accurately interpret the spatial features of 3D structures based on

their 2D cross-sections [Carroll 1993; Elewa 2013]. Morphologists

must retain detailed mental representations of tomographic slices

and infer the relationships between different slices and viewpoints

of specimens [Ziegler et al. 2010]. These practitioners often rely on

mental representations to make informed decisions as they work

across tomographic slices, requiring precision and robust retention

of the spatial relationships within the data [Pandolfi et al. 2020]. Tra-

ditionally, these manual tasks have been performed through vision-

only interactions on desktop setups [Sutton et al. 2016], which may

not fully support the cognitive demands of cross-sectioning, poten-

tially leading to errors and inefficiencies [Siqueira Rodrigues et al.

2023].

The literature suggests that combining touch and vision coher-

ently could enhance cognitive tasks involving interaction with

digital objects [Kaas et al. 2007; Newell 2010]. As these senses share

an established cognitive synergy, visuohaptic integration might

improve the robustness of digital object representations [Amedi

et al. 2001; Easton et al. 1997b]. Previous research demonstrated

that integrating congruent haptic feedback with visual information

can enhance memory retention for synthesized 3D objects across

the virtual reality continuum [Siqueira Rodrigues et al. 2024a,b].

However, limited knowledge exists on whether these benefits ex-

tend to the complex, real-world data encountered in morphology

tasks. As the characteristics of morphological data could interfere

with the synergistic effects of visuohaptic integration and produce

negative outcomes, it is crucial to investigate whether previously

observed haptic enhancement effects translate into this use case.

This paper addresses this gap through awithin-subject study that

investigated whether visuohaptic integration improves memory

retention of morphological data in a delayed match-to-sample task

(DMTS), which is a well-established method for exploring cognitive

processes involved in the retention of visual [Harrison and Tong

2009; Romo et al. 1999], haptic [Schmidt and Blankenburg 2018;

Schmidt et al. 2017], and visuohaptic stimuli [Siqueira Rodrigues

et al. 2024b]. Our DMTS task comprised a learning phase where par-

ticipants encoded tomographic slices of fossil specimens presented

in visual or visuohaptic conditions, which preceded a delay phase

where the memorized images disappeared to cause participants to

retain the stimuli until the task’s next phase. Following the delay,

participants concluded the task by responding to a two-alternative

forced choice (2AFC) task, where they identified retained stimuli

against foil distractors. These images resembled the memorized

samples. We measured response accuracy and speed and compared

scores between visual and visuohaptic sensory modality conditions.

Our findings demonstrate that visuohaptic encoding signifi-

cantly decreases error rates and response times when encoding

tomographic slices. Our observation extends previous findings by

demonstrating the applicability of visuohaptic integration retention

enhancements to a real-world use case. Our research results are

valuable in conceptualizing scientific visualization systems that

can leverage users’ inherent multisensory integration abilities for

the optimal encoding of tomographic data. For morphologists, inte-

grating haptics in data visualization platforms might enhance their

ability to retain accurate mental representations of fossil images

and consequently improve their performance in tasks where precise

memory of spatial relationships is crucial.

2 Related Work
2.1 Digital Morphology Challenges
Current digital morphology methods draw on tools designed for im-

porting, visualizing, processing, segmenting, and quantifying tomo-

graphic image datasets of specimens [Maga 2023]. For example, to

prepare tomographic data for quantitative analyses, morphologists

leverage image processing tools such as Fiji [Schindelin et al. 2012]

and ImageJ [Abràmoff et al. 2004]. On the other hand, platforms like

MorphoJ [Klingenberg 2011] provide an integrated environment

where practitioners can conduct various geometric morphometric

analyses of tomographic volumes and their 2D slices alike. Compre-

hensive general-use platforms, such as Amira [Stalling et al. 2005]

and 3D Slicer [Pieper et al. 2004], support visualization, segmenta-

tion, and quantification of specimens and facilitate statistical and

comparative studies. As these general-purpose visualization tools

were not specifically designed to address the unique challenges

morphologists face, researchers have extended these platforms to

suit their needs better. For example, SlicerMorph enhances the 3D

Slicer platform to accommodate specific morphological analysis

requirements, including retrieving, visualizing, measuring, and an-

notating digital specimens [Rolfe et al. 2021]. However, although

the advent of particular solutions has addressed or alleviated some

of the challenges in the digital morphology workflow, current tools

still fail to provide morphologists with intuitive and efficient means

to perform digital fossil preparation, which remains a burdensome

and cognitively demanding endeavor [Sutton et al. 2016]. The inte-

gration of Virtual Reality (VR) into scientific visualization platforms

[Pinter et al. 2020; Rodrigues et al. 2023; Shetty et al. 2011] repre-

sents an essential advancement in improving the interaction with
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tomographic data, as VR provides enhanced spatial and depth cues

that might potentially aid morphologists in visualizing and under-

standing complex 3D structures [Bryson 1996; Pausch et al. 1997].

However, while these immersive solutions might improve certain

aspects of the digital morphology workflow, their current interac-

tive capabilities fall short of improving digital preparation as they

are limited to passive viewing rather than active manipulation or

segmentation of data [Bimber et al. 2002; Eckhoff et al. 2003]. More

specifically, current tools still fall short in supporting cognitively

demanding tasks requiring morphologists to mentally represent

and accurately interpret the internal spatial features of 3D struc-

tures based on their 2D cross-sections to make informed decisions

as they work across tomographic slices [Pandolfi et al. 2020; Ziegler

et al. 2010]. Currently, the tools employed in digital morphology’s

manual processing tasks do not fully support the memory retention

demands of their workflows [Siqueira Rodrigues et al. 2023; Sutton

et al. 2016].

2.2 Visuohaptic Integration in Visualization
Researchers have been investigating the effects of integrating hap-

tics into visualizations since the introduction of haptic displays

[Massie and Salisbury 1994] and methods that communicate to-

mographic volume data as force-feedback [Iwata and Noma 1993;

Rodrigues et al. 2024]. Haptic rendering algorithms such as the

finger-proxy and god-object methods [Ruspini et al. 1997; Zilles

and Salisbury 1995] tackled initial technical challenges and were

posteriorly integrated into open-source frameworks such as Chai3D

[F. Conti et al. 2003] and H3D [Panëels et al. 2013] to enable re-

searchers to create customized haptic visualization solutions. Re-

searchers demonstrated several benefits of coupling vision and

haptics in visualization, as haptic hardware and rendering methods

advanced. For example, Lawrence et al. reported on the improve-

ments brought about by haptics in communicating the properties of

the different types of data fields [Lawrence et al. 2004]. Anderlind

et al. established that haptics accelerates the outlining of target

areas in medical imaging segmentation [Anderlind et al. 2008].

Palmerius et al. demonstrated that force-feedback enables users to

detect fuzzy data structures during volume rendering exploration

[Palmerius and Forsell 2009]. Mendez et al. showed that haptics

improve different aspects of volume data navigation [Mendez et al.

2005]. Additional benefits include enhanced path following [Faludi

et al. 2019] and target selection [Wall and Harwin 2000]. Although

integrating haptics in visualizations has been shown to improve

learning [Bara et al. 2007; Bivall et al. 2011], knowledge of its effects

on the retention of tomographic images remains limited.

2.3 Behavioral and Theoretical Basis for
Haptics to Enhance Memory Retention

The literature in experimental psychology and cognitive neuro-

science indicates that the coherent integration of haptic and visual

signals may enhance sensory encoding and facilitate stimulus re-

tention in working memory. Since the early behavioral investiga-

tions of Loomis [Loomis 1982] and Klatzky [Klatzky et al. 1985],

researchers have been exploring whether haptic and visual sensory

information share mental representations that can be encoded and

retrieved by both senses [Grunwald 2008]. In addition to behavioral

evidence, neuroimaging studies have demonstrated that visual and

haptic stimulation activate coinciding cerebral areas that encode

and host modality-independent and abstract object representations

[Amedi et al. 2001; James et al. 2002]. Cross-modal priming further

supports the existence of shared mental representations, as object

characteristics encoded through vision can be retrieved via touch,

and vice versa, and are similar to within-modal priming [Easton

et al. 1997a,b; Reales and Ballesteros 1999]. Additional behavioral

evidence of such shared representations is provided by the strik-

ingly comparable patterns that vision and haptics display in shape

perception and object identification [Craddock and Lawson 2009;

Gaissert and Wallraven 2012]. Therefore, as the literature provides

extensive evidence of the natural cognitive synergy between vision

and haptics, the congruent integration of these senses is likely to

reap perceptual enhancements that might ultimately enhance the

robustness of resulting mental representations and create behav-

ioral benefits [Lalanne and Lorenceau 2004].

2.4 Demonstrated Effects of Visuohaptic
Integration on Memory Retention

Previous research has examined the memory retention effects of in-

tegrating vision and haptics during stimulus encoding. For instance,

Jones et al. reported that visuohaptic integration increased accuracy

in an identification task involving unfamiliar objects [Jones et al.

2005]. Also, Seaborn et al. utilized a pattern-matching task to com-

pare the effects of encoding modalities on memory and workload,

finding that the integration of visual and vibrotactile cues improves

stimulus retention without impacting cognitive load [Seaborn et al.

2010]. In a study comparing visual and visuohaptic exploration of

physical objects, Kalenine et al. observed that bimodal encodingwas

superior to its vision-only counterpart [Kalenine et al. 2011]. Ac-

cordingly, Wijntjes et al. compared the perception of object shapes

in vision-only and visuohaptic conditions. They reported that the

integration of haptics improves accuracy due to its ability to dis-

ambiguate visual distortions [Wijntjes et al. 2009]. Additionally,

Jüttner et al. demonstrated that preconditioning visuohaptic explo-

ration outperformed its unimodal visual and haptic counterparts

in influencing retention efficacy efficiency at a posterior learning

task [Juttner et al. 2001]. Although Kreimeier et al. reported that

including vibrotactile feedback increased shape identification ac-

curacy, these researchers associated these haptic cues with slower

response times [Kreimeier et al. 2019]. Comparably, Siqueira Ro-

drigues et al. reported that their visuohaptic encoding of digital

objects yielded lower error rates but did not significantly affect

response times in comparison to their vision-only encoding con-

dition [Siqueira Rodrigues et al. 2024a]. However, in a later study

using a 2D display environment, the same authors reported lower

response times in the visuohaptic condition [Siqueira Rodrigues

et al. 2024b]. Similarly to error rates, response times are generally

expected to be indicators of mental representation robustness, as

more reliable memories can be retrieved more rapidly [Miner and

Reder 1994] as behavioral benefits of early multisensory facilitation

[Smith and Gasser 2005; Stein and Meredith 1993]. While most pre-

vious studies have established that visuohaptic integration yields

memory retention benefits, there is limited knowledge on whether
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these findings would apply to use case data such as the tomographic

images processed in the morphology workflow.

3 Methodology
In a within-subject study, we applied a DMTS task with visual and

visuohaptic encoding modality conditions. The graphical presenta-

tion was delivered through a desktop screen, whereas a grounded

force-feedback device provided haptic rendering. We measured er-

ror rate and response time to assess whether the supplementation of

haptic feedback could result in performance enhancements. Based

on related literature, we hypothesized the following:

H1: Visuohaptic encoding will lower error rates than the visual

encoding modality condition.

H2: Visuohaptic encoding will result in shorter response times

than the visual encoding modality condition.

Figure 2: A participant interacts with a stimulus using a desk-
top display and a force-feedback device during a trial.

3.1 Experimental Design Pre-study
We conducted a pre-study to explore the feasibility of our task

design and validate our stimuli set before implementing the main

experiment. This study enabled us to identify and address exper-

imental design and technical shortcomings and ensure that the

chosen stimuli and tasks were suitable for the intended memory

retention evaluations. In this pre-study, four participants completed

a total of 240 trials. The quantitative results and qualitative feed-

back collected during this preliminary study allowed us to make

key adjustments to our experimental design. First, we fine-tuned

the visual presentation of stimuli to ensure consistency and clarity

across trials. Additionally, certain task parameters, such as the time

limits for learning and testing phases, were exploratively adjusted

to better align with the cognitive load expected in the main study.

The pre-study included a haptic-only condition where participants

experienced haptic cues solely at touched locations without ac-

companying visual cues. This condition aimed to evaluate whether

participants could effectively encode and retain the characteristics

of tomographic images based purely on haptic feedback, which

had been deemed possible in previous research using synthesized

stimuli created on 5× 5 matrices [Siqueira Rodrigues et al. 2024a,b].

In contrast, our results indicated that the haptic-only condition

was not feasible within our experimental framework as its error

rates averaged above chance (𝑥 = 0.64, 𝜎 = 0.48), strikingly higher

than its visual (𝑥 = 0.36, 𝜎 = 0.48) and visuohaptic (𝑥 = 0.31,

𝜎 = 0.47) counterparts. This finding aligns with existing literature

on haptic perception and memory, which consistently reports that

sighted individuals tend to perform poorly when sightlessly explor-

ing two-dimensional haptic images, even when these images are

familiar or represent simple objects [Fradin et al. 2023; Lederman

et al. 1990; Schiff and Foulke 1982]. Given that tomographic slices

are considerably more complex and that the nature of this task

paradigm required us to select image excerpts devoid of semantic

meaning, we anticipated that our stimuli would be challenging

to memorize within the constraints of a brief learning phase in

a DMTS. Thus, the haptic-only condition performance led to its

exclusion from the main study, allowing us to focus on the visual

and visuohaptic conditions, which were more likely to yield mean-

ingful data and contribute to a better understanding of the effects

of multisensory integration on memory retention in a professional

use case setting.

3.2 Participants
Participants possessed corrected-to-normal or normal vision, were

reportedly right-handed, and free of neurological or psychiatric

disorders. Individuals reported that they did not have previous ex-

perience with force-feedback haptic devices. Participants knew the

research project’s goals but did not know the research hypotheses

to avoid biases for and against the research outcomes. They were

recruited through online advertisement, provided written informed

consent upon arrival, and were monetarily compensated with 30

Euros upon study completion. 18 individuals completed the study

(N=18, age: 27.5 ± 3.79, 10 females, 8 males). A participant is shown

in Figure 2.

3.3 Procedure
Participants began the study by providing demographic data and

written informed consent. They were then introduced to the ex-

perimental setup and accommodated around the apparatus, which

included height adjustments to the elbow support and alignment

of the haptic device to their right shoulders, ensuring similar elbow

pivoting ranges across all participants. Participants then completed

three untimed guided training trials for each condition. Next, timed

training continued until participants felt sufficiently prepared for

the task. Participants completed 96 trials, organized into four experi-

mental runs of 24 trials each, each taking approximately 15 minutes.

Each run consisted of two trial blocks of 12 trials, corresponding to

the two encoding modality conditions and counterbalanced. Each

experimental run was followed by participant-chosen breaks, which

generally lasted between one and five minutes. The haptic device

was recalibrated between experimental runs to ensure consistency

between virtual and physical probe positions and enable congruent

haptic feedback.

3.4 Apparatus
For haptics, we employed a 3D Systems Touch grounded force-

feedback device (3D Systems, Rock Hill, SC, United States). The

application presented the stimuli using an XP-Pen 22E Display

(XPPEN Technology Co, Shenzhen, China), chosen solely for its
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adjustable horizontal support, as its touchscreen capabilities were

not utilized. We employed a LogiLink Numerical Keypad (LogiLink

GmbH, Schalksmühle, Germany) for participant answer input in

the 2AFC task. The hardware setup included a desktop computer

capable of rendering graphics at 60Hz and haptics at 1000Hz. The

experimental application was developed using Visual Studio 2022

and the Chai3D Framework [F. Conti et al. 2003] on Windows 10.

Figure 3: Sample stimulus (A) and its normal map (B). Foil
Stimulus (C) and its normal map (D). Stimuli have a resolu-
tion of 512× 512 and are excerpts from a fossil scan dataset.
Foils differ from samples by minor changes to their visual
landmarks. Trials presented unique samples and foil pairs.

3.5 Stimuli
We developed a distinct stimulus for each trial, and this image

set was displayed to participants in a randomized order. Stimuli

consisted of cropped sections from 2D tomographic slices stem-

ming from Computer Tomography (CT) scans of fossil specimens.

Image sections were selected to align with the time constraints

of the DMTS task, which required stimuli to be sufficiently sim-

ple to enable memorization within the DMTS learning phase. As

studies employing this task require numerous repeated measures

to attribute observed effects to controlled variables confidently,

visually complex image sections or three-dimensional volume ren-

dering could not be utilized as stimuli. Selected image excerpts

were intentionally abstracted to prevent semantic processing and

minimize long-term memory effects associated with participants’

prior knowledge of fossil morphology. Selected stimuli magnifica-

tion rates aimed to resemble the views that morphologists typically

observe when making precise selections during image segmenta-

tion, which is also the case when examining physical specimens

through microscopes. Figure 3(A) shows an example of a sample

stimulus. Entropy and edge detection scores were utilized to main-

tain visual complexity consistency among stimuli and control for

performance discrepancies. To ensure that each stimulus equally

impacted encoding conditions, stimuli were alternated between

conditions and presented to an even number of participants. Each

sample was paired with a foil stimulus, generated through parame-

terized algorithmic transformations involving slight adjustments

to landmark points, as shown in Figure 3(C). As evident and de-

tectable foil stimuli transformations would undermine the task’s

objectives, we manually reviewed foil samples and alternated half

of the samples with their corresponding foils. To render stimuli to

haptic perception, we generated normal maps for each stimulus,

translating grayscale differences as topological depth variations.

As illustrated in Figure 3(B), we applied Gaussian blur and thresh-

olding during normal map generation to selectively render texture

details to prevent occasional haptic rendering malfunctions caused

by brighter and sharper regions
1
. Foils were also paired with nor-

mal maps generated under the same conditions as those used for

the original stimuli, as demonstrated in Figure 3(D). The generated

normal maps encoded micro-geometry information representing

the direction vectors at each pixel and were rendered haptically

as textures and topographies. Using Chai3D’s collision and force-

rendering algorithms [F. Conti et al. 2003], contact points between

the virtual representation of the haptic stylus and stimulus surfaces

were used to sample normal vectors and determine the direction

and strength of force-feedback during trials. Although we did not

modify the original force-rendering algorithms, material stiffness

was capped at 70% of our haptic device’s capacity to prevent un-

desirable artifacts and eventual loss of movement agency. Haptic

rendering and normal map generation settings can be obtained in

the repository included in section 7.

Our study employed a DMTS task, a cognitive evaluation tool

that presents a sample stimulus for memory encoding, followed by

a delay where the stimulus is absent, which requires participants

to retain its mental representation [Daniel et al. 2016; Miller et al.

1968]. After the delay phase, participants completed a 2AFC task,

identifying the retained stimulus next to a similar distractor stimu-

lus, or foil [Bogacz et al. 2006]. During the encoding phase, a sample

stimulus of either visual or visuohaptic condition was presented

at the center of the workspace for twelve seconds. Following a

five-second delay, participants had up to 24 seconds to compare

and choose between sample and foil stimuli and identify which

matched the original stimulus. In this 2AFC task, participants used

left and right arrow keys in a Numpad keyboard to indicate the

target stimulus’ position. We randomized and balanced target posi-

tions across trials to prevent response biases. Participants received

visual feedback indicating whether their choices were correct (i.e.,

a green "+" sign or a red "x" character). Trials were separated by

five-second intervals that elapsed once participants indicated their

responses. Before a new trial commenced, participants were nudged

to raise the haptic stylus above the stimulus cover mask.

Amask overlay covered stimuli in the learning and testing phases

and in both encoding modality conditions. Participants used the

haptic probe to reveal the stimuli’s appearance through a circular

aperture at the point of contact, as depicted in Figure 4. Our design

was inspired by Loomis et al. [Loomis et al. 1991] and Jones et al.

[Jones et al. 2005], both of whom used a similar sampling restriction

strategy to make encoding modality conditions comparable. As hap-

tic encoding is generally performed through successive impressions

[Gibson 1962] and vision is capable of simultaneously sampling

multiple areas [Lederman et al. 1990], humans rely typically on

and prioritize vision for perceiving geometric features [Zangaladze

et al. 1999]. Thus, restricting visual presentation to touched areas

ensured that participants would perform similar movements in both

encoding conditions and be exposed to potential haptic cues while

examining stimuli. In the visual encoding condition, participants re-

vealed the stimulus at probe positions, whereas, in the visuohaptic

condition, they could explore stimuli using both touch and vision.

1
Nvidia Texture Tools settings: BC4u grayscale format, Object space normal map

image, Box filter for mipmaps, Max RGB height source, height generation using dUdV

normal filter with Min Z = 0.674, Scale = 64, and Alpha Field set to Height (Normalized).

Applied filters included Negative, Darker, Smooth, and Gaussian Blur with a radius 9.

The DPF preset containing these settings is included in our open-source repository.
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Figure 4: (A) The haptic probe approaches the masked stimu-
lus. (B) Learning phase: A circular aperture reveals the stim-
ulus at the touched point. (C) Testing Phase: Examination of
sample and foil stimuli, presented side-by-side.

While this task design prioritizes experimental control, ecologi-

cal validity is also considered. Morphology workflows often involve

interaction with magnified areas of tomographic slices during the

selection of regions of interest for semi-automatic image segmenta-

tion of specimens [Pandolfi et al. 2020; Sutton et al. 2016]. Although

scientific visualization software does not mask the remaining parts

of working images as in our circular aperture design, users arguably

focus their visual attention on limited radii surrounding their se-

lection cursors. While morphologists currently perform selections

through mouse or stylus devices and not through a haptic device,

their workflow’s sequential interaction with limited parts of tomo-

graphic slices connects with our proposed design. The connection

between our DMTS task and the cognitive demands of the image

segmentation task and associated cross-sectioning in morphology

is discussed in 5.3.

3.6 Independent Variables
We defined EncodingModality as an independent variable encom-

passing Visual and Visuohaptic conditions. In Visual condition trials,
participants explored sample stimuli only visually as its haptic feed-

back was limited to conveying that the probe was in contact with

the stimulus, not providing haptic cues of stimulus characteristics.

In contrast, in the Visuohaptic condition, stimulus characteristics

were presented through visual and haptic rendering.

3.7 Dependent Variables
This study included Error Rate and Response Time as dependent
variables. Error Rate represents the relative number of erroneous

2AFC responses, which occurred when participants opted for a

foil rather than the encoded target stimulus. Response Time was

measured as the interval between the testing phase’s beginning

(i.e., the first appearance of target and foil stimuli) and response

execution (i.e., the pressing of an arrow key).

4 Results
Eighteen participants completed the experiment and reached overall

performance above 60% (58 or more correct responses in 96 trials),

the minimum score required to perform significantly above chance

at 𝑝 < .05 according to a binomial distribution. We statistically

examined error rate and response time for significant differences

between encoding modality conditions. We applied a Shapiro-Wilk

test to investigate data distribution and applied appropriate statisti-

cal testing to determine statistical differences between measures.

Cohen’s 𝑑 was reported as an effect size measure.

Visual Visuohaptic
Encoding Modality
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Figure 5: Error rates across conditions. Asterisks indicate
significant differences between conditions, as determined
by paired-sample t-tests. We find significant differences be-
tween visual and visuohaptic conditions, with trials in the
visuohaptic condition resulting in lower error rates.

4.1 Error Rate
As determined by a Shapiro-Wilk test, error rates followed a normal

distribution (𝑝 > .05). Thus, a paired-sample t-test reported a sig-

nificant difference in error rates between the visual and visuohaptic

encoding modality conditions, 𝑡 (17) = 4.92, 𝑝 < .001, 𝑑 = 0.48.

The visuohaptic condition resulted in a lower error rate (𝑥 = 0.20,

𝜎 = 0.10) compared to the visual condition (𝑥 = 0.25, 𝜎 = 0.10). The

mean error rate per participant is depicted in Figure 5.

4.2 Response Time
A Shapiro-Wilk test determined that response times adhered to a

normal distribution (𝑝 > .05). Accordingly, a paired-sample t-test

revealed a significant difference in response times between visual

and visuohaptic conditions, 𝑡 (17) = 2.31, 𝑝 = .034, 𝑑 = 0.13. The

visuohaptic encoding condition produced shorter response times

(𝑥 = 13.40, 𝜎 = 4.07) compared to the visual condition (𝑥 = 13.94,

𝜎 = 4.20) as illustrated in Figure 6.
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Figure 6: Response times across conditions. Asterisks indicate
significant differences between conditions, as determined by
paired-sample t-tests.Wefind significant differences between
visual and visuohaptic modalities, with visuohaptic encoding
resulting in shorter response times.

5 Discussion
5.1 Visuohaptic Encoding Modality Results in

Lower Error Rates
Our results indicate that the visuohaptic encoding modality signifi-

cantly reduces error rates in comparison with the visual encoding

condition, which supports our first hypothesis (H1). In regard to

the corresponding analysis reported by Siqueira Rodrigues et al. for

these two conditions [Siqueira Rodrigues et al. 2024a], our results

reported a slightly larger effect size (𝑑 = 0.48 vs 𝑑 = 0.41) and

greater significance levels (𝑝 < .001 vs 𝑝 = .011), which might

be due to our increased total of trials per condition (864 vs 600).

Although there is no evidence that additional encoding time would

exclusively benefit the visuohaptic condition, it is important to note

that our study provided longer encoding time (12 vs 7 seconds) to

both conditions, as our pilot results evidenced as necessary for task

completion due to the higher complexity of our stimuli. Another

important factor that might impact this analysis is the difference in

display environment, as the aforementioned experiment employed

an immersive environment whereas our study utilized a desktop

display. Although our experiments’ stimuli appear to be more com-

plex than their corresponding counterparts in the cited study, mean

error rates were similar for the visuohaptic (𝑥 = 0.20 vs 𝑥 = 0.19)

and visual (𝑥 = 0.25 vs 𝑥 = 0.24) conditions, which could result

from the interplay between stimulus complexity, encoding time,

and display environment, as VR might potentially have a detrimen-

tal effect on memory performance [Juliano et al. 2022; Kargut et al.

2024]. In addition to their similarity to the above study, our findings

generally align with previous research that has shown the benefits

of integrating sensory information from multiple sensory modal-

ities to form more accurate mental representations [Engelkamp

and Zimmer 1994; Loomis 1982]. In the context of our study, the

combination of visual and haptic feedback likely provided com-

plementary cues that enhanced participants’ ability to encode and

recall the details of tomographic slices more accurately than using

solely visual cues [Gaissert and Wallraven 2012; Klatzky et al. 1985].

This multisensory integration may offer a richer set of retrieval

cues, leading to more robust mental representations compared to

when using visual input alone [Engelkamp 1995]. These findings

are consistent with studies that have observed enhanced accuracy

through multimodal encoding strategies, even though the specific

contexts and modalities differ [Juttner et al. 2001; Kreimeier et al.

2019; Seaborn et al. 2010].

5.2 Visuohaptic Encoding Modality Results in
Shorter Response Times

Our results indicate that visuohaptic encoding significantly reduces

response times in comparison with the visual condition, which

supports the hypothesis (H2). Our findings contrast with results

reported by Siqueira Rodrigues et al., who did not find a significant

effect of visuohaptic integration on response times [Siqueira Ro-

drigues et al. 2024a]. Several factors might account for this diver-

gence, such as differences in statistical tests, number of trials per

condition, testing time limits, and display environment. In the data

analyzed by these previous authors, response times were not nor-

mally distributed, which caused them to utilize the Friedman test

and Bonferroni-corrected Wilcoxon-signed rank post hoc tests as

opposed to the paired-samples t-test we could employ to analyze

our normally-distributed data. Although the effect size was small

in both studies (𝑑 = 0.13 vs 𝑑 = 0.04), our increased total of tri-

als per condition (864 vs 600) might also have contributed to this

difference in significance levels. Additionally, our experimental de-

sign allowed for longer exploration in the testing phase (up to 24

vs 14 seconds), potentially increasing the average response times

across visuohaptic (𝑥 = 13.40 vs 𝑥 = 9.39) and visual (𝑥 = 13.94

vs 𝑥 = 9.50), which is to be expected as participants are generally

predisposed to pace themselves according to the testing phase’s

available time [Bogacz et al. 2006]. The VR environment showcased

by previous authors might also have adversely affected their par-

ticipants’ response times, as VR may increase cognitive load and

impact task efficiency, especially among VR novices [Makransky

et al. 2019; Sagnier et al. 2020]. In fact, in a similar study employ-

ing 2D displays, authors reported shorter response times in the

visuohaptic condition, which aligns with our findings [Siqueira Ro-

drigues et al. 2024b]. Generally, response times are expected to

positively correlate with error rates in indicating the robustness of

mental representations, as sturdier memory traces can be accessed

more efficiently [Miner and Reder 1994]. Coherent multisensory

encoding, such as the visuohaptic modality in our study, provides

redundant signals and might result in early multisensory facilita-

tion, which may result in behavioral benefits such as enhanced

decision-making [Smith and Gasser 2005; Stein and Meredith 1993].

This interplay between efficiency and effectiveness associated with

representations is also observable as memory retrieval efficiency

is one of the factors influencing participants’ meta-judgment of

memory accuracy [Costermans et al. 1992].
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5.3 Interaction Design Implications for
Scientific Visualization

Our findings have implications for improving the design of sci-

entific visualization applications towards supporting users whose

tasks require accurate memory retention of information presented

on tomographic images. As our results demonstrate that visuohap-

tic encoding of tomographic slices stemming from fossil datasets

reduces error rates and response times in a working memory task,

integrating haptic feedback into scientific visualizations could im-

prove users’ ability to retain such data in everyday tasks. Such

an improvement could be especially beneficial for morphology

professionals, as their workflows involve maintenance and cog-

nitive manipulation of mental representations of image datasets

[Meier et al. 2001; Siqueira Rodrigues et al. 2023]. Morphologists

heavily utilize scientific visualization platforms to process digital

specimens, and labor-intensive tasks such as manual image segmen-

tation, require researchers to select regions of interest on certain

tomographic slices while retaining accurate representations of other

slices as memorized from different perspectives [Sanandaji et al.

2023; Ziegler et al. 2010]. Indeed, segmentation and other morphol-

ogy tasks require significant cross-sectioning, namely the ability

to accurately interpret and mentally represent the internal spatial

features of 3D structures based on their 2D cross-sections [Carroll

1993]. Therefore, integrating haptic feedback into visualization tools

may help morphologists maintain accurate mental representations

of complex fossil structures, potentially reducing errors and im-

proving decision-making efficiency in their workflows. Compared

to previous research that explored the utility of visuohaptic inte-

gration on the retention of synthesized stimuli [Siqueira Rodrigues

et al. 2024a,b], our findings extend the generalizability of such find-

ings to a professional use case and its corresponding data. As our

selection of image sections was limited by the complexity and ab-

straction constraints of the DMTS task, further investigation using

different tasks would be necessary to more thoroughly establish the

utility of haptic integration in this context. Our investigation was

limited to the interaction with tomographic slices as the most com-

mon design space in the morphologist workflow. However, as these

professionals also visualize specimens through volume rendering

[Sutton et al. 2016], further studies addressing three-dimensional

design spaces in visualization would paint a more complete picture

of the utility of haptics in the scientific visualization context.

5.4 Limitations and Future Work
Our study’s relatively small sample size may limit the generalizabil-

ity of its findings. Although a sample size of eighteen participants

falls within the common range in HCI studies [Caine 2016], future

research with more extensive and diverse participant pools would

extend the applicability of our reported effects and expand on the

robustness of our results. Other factors, such as our choice of hap-

tic feedback device, haptic rendering method, and stimulus design

also limit the generalizability of our results. Although grounded

force-feedback devices are commonly employed in similar behav-

ioral studies for reliably rendering stimuli [McCormack et al. 2018],

our findings may not extrapolate to vibrotactile, exoskeleton, and

midair haptic displays, among others. It is also noteworthy that

the researchers unavoidably made arbitrary choices regarding the

modeling of visual stimulus characteristics into haptic rendering.

Leveraging normal maps to communicate grayscale values as to-

pography is just one of the many ways tomographic slices can be

rendered haptically, implying that the effects we report might not be

observed using other haptic modalities. Our stimulus choices were

also limited by their suitability to the DMTS and 2AFC paradigms

and the study time limitations. Therefore, although our results in-

dicate that stimulus design was appropriate for our experimental

tasks, our findings may not be transferable to tomographic images

featuring remarkably different characteristics regarding complexity,

salience, contrast, etc. The choice for the DMTS task also has its lim-

itations, as this task is designed to measure stimuli retention only

in working memory. While our findings regarding the retention

effects of visuohaptic integration apply to common tasks performed

within scientific visualization platforms, our results cannot be ex-

trapolated to tasks involving long-term memory. Future research

would require a different paradigm to test the utility of haptics

in common morphology workflow scenarios involving long-term

memory retention, such as visualizing a specimen in preparation

for offline physical processing. Since memory retention and mental

workload are interconnected [Kosch et al. 2023], measuring mental

workload could provide more insights regarding the memorization

performance for different haptic rendering modalities.

6 Conclusion
Our study demonstrates that visuohaptic integration significantly

enhances memory retention of morphological tomographic images,

as evidenced by lower error rates and faster response times in a

delayed match-to-sample task. These findings expand the existing

knowledge on the utility of sensory integration, validating its ap-

plication towards complex use case data. Our insights are relevant

to morphology workflows, where maintaining accurate memory

representations of spatial relationships is important. These results

have implications for the design of scientific visualization tools,

as incorporating haptic feedback into manual processes such as

cross-sectioning and image segmentation may optimize memory

retention and consequently improve decision-making processes for

morphology professionals. Interface designers might leverage visuo-

haptic integration to improve workflow efficiency in tasks requiring

detailed mental representations of tomographic data, thereby sup-

porting more accurate and efficient analysis and interpretation of

complex morphological structures within virtual environments.

7 Data Availability
The data that support the findings of this experiment, along with

their corresponding data analysis scripts and software on GitHub
2
.
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